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Abstract. It is commonly known the natural tendency of artificial neu-
ral networks to completely and abruptly forget previously learned in-
formation when learning new information. We explore this behaviour in
the context of Face Verification on the recently proposed Disguised Faces
in the Wild dataset (DFW). We empirically evaluate several commonly
used DCNN architectures on Face Recognition and distill some insights
about the effect of sequential learning on distinct identities from different
datasets, showing that the catastrophic forgetness phenomenon is present
even when the domain of the new and old tasks remains unchanged.
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1 Introduction

Deep Convolutional Neural Networks (DCNNs) have achieved remarkable suc-
cess in various cognitive applications such as image recognition, facial detec-
tion, signal processing, on supervised, unsupervised and reinforcement learning
tasks through feature representations at successively higher, more abstract lay-
ers. Computational complexity and the time needed to train large networks is
one of the major challenges for convolutional networks. It is common to pretrain
a DCNN on a large dataset and then use the trained network as an initialization
or as a fixed feature extractor for a particular application [22]. A major down-
side of such DCNNSs is the inability to learn new information since the learning
process is static and only done once before it is exposed to practical applications.
This problem is called Catastrophic forgetting.

Catastrophic forgetting is a term, often used in connectionist literature, to de-
scribe a common problem with many traditional artificial neural network models.
It refers to forgetting what has been learned upon learning new or different in-
formation. For instance, when a network is first trained to convergence on one
task, and then trained on a second task, it forgets how to perform the former.

* Both authors contributed equally to this work.
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There are some approaches to improve the performance of models when learning
new information that benefit from previously learned information, for example
fine-tuning [6], where the old task parameters are adjusted to adapt to a new
task. Other approaches well known are feature extraction [5] where the param-
eters of the old network are unchanged and the parameters of the outputs of
one or more layers are used to extract features for the new task. There is also
a paradigm called joint train [4] in which parameters of old and new tasks are
trained together to minimize the loss in all tasks.

Overcoming the problem of catastrophic forgetting is an important step. Some
methods have already been developed to overcome this problem [16], [25], [§].
But even with these and other methods, the problem of catastrophic forgetting
is still a key problem within the Artificial Intelligence (AI) community and it is
time to move towards algorithms that can learn multiple tasks over time [23].
This paper focuses on catastrophic forgetting on Face verification. Many inno-
vative and novel approaches have been developed specifically for the tasks of
visual face recognition and verification in order to boost performance on public
datasets such as Labeled Faces in the wild (LFW) [11]. However, the perfor-
mance on completely unconstrained datasets like Youtube Face (YTF) 28], and
UMDFaces [1] remains subpar at low false alarm rates. These datasets contain
significant variations in illumination, pose, expression, aging and tend to have
low resolution and clutter filled images. This indicates that the problem of face
recognition is far from solved. The recently announced Disguised Faces in the
Wild (DFW) dataset aims to study another covariate of the face verification
pipeline - disquises.

Disguise and impersonation are part of a sub-field of face recognition where the
subjects are non-cooperative and are actively trying to deceive the system. A dis-
guise involves both intentional or unintentional changes on a face through which
one can either obfuscate his/her identity. This means that the subject is trying to
adopt a new identity in order to hide his/her own. A subject might impersonate
someone else’s identity. Obfuscation increases the inter-class variations whereas
impersonation reduces the inter-class dissimilarity, thereby affecting face recog-
nition/verification task and making it non-trivial. This is a very challenging face
verification problem and has not been studied in a comprehensive way, primarily
due to the unavailability of such a dataset. The aim of a face verification system
in such cases is to identify a given subject under varying disguises while rejecting
impostors trying to look like the subject of interest in an uncontrolled setting.
From the point of view of an automated computer vision method, it is impor-
tant to extract rich face features in-order to distinguish among the identities and
verify them correctly.

In this paper, we explore catastrophic behaviour in the context of Face Veri-
fication on the DFW dataset. We empirically evaluate several commonly used
DCNN architectures on Face Recognition and distill some insights about the
effect of sequential learning on distinct identities from different datasets which
are explained in the following sections.
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2 Related Work

In this section we briefly review some recent related work and proposed methods
on face recognition/verification and catastrophic forgetting.

Disguised faces recognition focuses on recognizing the identity of disguised faces
and impersonators. There is limited research focus on this topic. MiRA-Face [29)
uses two CNNs networks one for aligned input and the other for unaligned in-
put to perform generic face recognition. Then, Principal Component Analysis
(PCA) is used to find the transformation matrix for face recognition adaptation.
Another work is Deep Disguise Recognizer (DDRNET) [13] uses an Inception
Network along with Center loss [27] followed by classification using a similarity
metric. DisguisedNet [26] proposed a Siamese-based approach using the pre-
trained VGG-Face [19] and after that, cosine similarity is applied for perform-
ing classification of the learned features. AEFRL [24], performs face detection
and alignment on the input images using Multi-task Cascaded Convolutional
Networks(MT-CNN) [30] followed by horizontal flipping. An ensemble of five
networks is used to obtain features for original and flipped images. The concate-
nation of these features are used to perform classification using cosine similarity.
UMDNets [2] is another work which also uses All-in-One to align the images
using facial landmarks. They performs feature extraction using two networks,
followed by independent score computation. Then, classification is performed by
averaging the scores obtained via the two feature sets. Table [I| provides a list of
the proposed approaches on DFW dataset for face verification.

The problem of catastrophic forgetting is a big issue in machine learning and
artificial intelligence if our goal is to build a system that learns through time,
and is able to deal with more than a single problem. According to [17], without
this capability we will not be able to build truly intelligent systems, we can only
create models that solve isolated problems in a specific domain. There are some
recent works that tried to overcome this problem, e.g., domain adaptation that
uses the knowledge learned to solve one task and transfers it to help learning
another, but those two tasks have to be related. This approach was used in [12]
to avoid the problem of catastrophic forgetting, in order to do so they use two
properties. The first property was to keep the decision boundary unchanged and
the second one, was that the feature extractor from the source data by the target
network should be present in a position close to the features extracted from the
source data by the source network. As was shown in the experiments, by keeping
the decision boundaries unchanged new classes cannot be learned, making this
approach unable to deal with related tasks that present a different number of
classes. Early attempts to alleviate catastrophic forgetting often consists of a
memory system that store previous data and replays the sampled old examples
with the new data [20], and similar approaches are still used today [15]. [21]
learns a generative model to capture the data distribution of previous tasks, and
both generated samples and real samples from the current task are used to train
the new model so that the forgetting can be alleviated for continual learning.
In our work, we will show that the intrinsic forgetness property of neural net-
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works not only present when performing classification but also when extracting
features even for tasks whose domain is the same.

Table 1: Different Approaches to Face Verification

Model Brief Description

AEFRL |MTCNN + 4 Networks for feature extraction + Cosine distance
DDRNET Weighted linear combination of ensemble of 3 CNNs
DisguiseNet| VGG siamese architecture + Weighted Loss + Cosine Distance
MiRA-Face MTCNN + RSA + Ensemble of CNNs Text follows
UMDNets All-in-One + average across scores obtained by 2 networks

Validation Impersonation

Fig.1: Some example images of Disguised Faces in the wild (DFW) dataset.
The dataset contains four kinds of images : normal, validation, disguise and
impersonator (figure taken from )

3 Methodology

In this section we describe the DFW dataset along with the evaluation
protocols it presents. We comment on the different architectures we use for
our experiments and explain the identity overlap between the datasets used
for training and the DFW test set.

3.1 Dataset

In our experiments we evaluate the performance of different models in the face
verification task using the DFW dataset. This dataset has been created to ad-
dress the issue of disguised and imposter faces in the wild. The dataset consists
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of 11,157 images belonging to 1000 different subjects. Images pertaining to 400
subjects form the training set, while the remaining 600 subjects constitute the
test set. Each subject has at least five face images, and can have four types of
images: (i) normal, (i) validation, (iii) disguised and (iv) impersonator.
Normal images correspond to non-disguised frontal face images. Validation im-
ages are used to generate a non-disguised pair within a subject. Disguised images
correspond to a face image of the same subject having intentional or uninten-
tional disguise. Impersonator images correspond to a face image of individuals
who intentionally or unintentionally look similar to a different subject. An ex-
ample of each is shown in Fig

Three verification protocols have been provided with the DFW dataset to un-
derstand and evaluate the effect of disguises on face recognition.

— Protocol-1 (Impersonation) evaluates the capacity of the system to dif-
ferentiate genuine users from impersonators. Genuine pairs for this protocol
are created by combining a genuine image and a validation image from the
same subject. Impostors pairs are created by combining impersonator im-
ages with normal, validation and disguised images from the same subject.
This protocol is made up of 25,046 possible pairs.

— Protocol-2 (Obfuscation) evaluates the robustness of the system when it
comes to detecting when a subject is unintentionally or intentionally trying
to hide his identity. The genuine set for this protocol comprises pairs formed
by (normal, validation), (validation, disguise) and (disguise;, disguises) im-
ages from the same subject. Where disguised,, corresponds to the n!* dis-
guised image of a subject. Impostor pairs are generated by creating cross-
subject pairs, combining normal, validation and disguised images of one sub-
ject with their counterpart from another subject. This protocol consists of
9,041,283 possible pairs.

— Protocol-3 (Overall Performance) is a the combination of the previous
two and evaluates the overall performance of the system. A valid genuine
or impostor pair for this protocol can be any genuine or impostor pair from
protocols 1 and 2. This protocol comprises 9,066,329 possible pairs.

3.2 Neural network architectures

In order to carry out the experiments we used three neural network architectures:
(i) VGG-Face [19] (ii) ResNet-50 [9] (iii) Se-ResNet-50 [10]. The training and
testing details will be explained in the following section.

VGG-Face In our first experiment, we use a pretrained implementation of the
VGG-Face CNN which is one of the top performing deep learning models for
face recognition, this will act as our baseline for the rest of the experiments. The
network was trained on the VGG-FACE dataset [19].
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Table 2: Datasets used for the training of each model. The last column refers to
the number of different identities present in the training set of each dataset that
can also be found in the DFW test set.

Dataset VGG | Resnet50 | Resnet50-ft | Senet | Overlapping Identities
VGG-Face v 203 (33%)
VGG-Face2 v v v 122 (20%)
MS-Celeb-1M v v 348 (58%)
DFW (non-overlapping) 143 (24%)

ResNet-50 In the next experiment, we use two residual networks for our face
verification system, concretely two Resnet-50. One network is trained on MS-
Celeb-1M [7] and then fine-tuned VGG-Face2 [3], while the other one is just
trained on VGG-Face2. The architecture comprises 50 convolutional layers fol-
lowed by a fully connected layer of dimension 2048. Once, we use a pretrained
implementation of ResNet-50 which is fine-tuned with VGG-Face2 and then,
pretrained ResNet-50 is used without fine-tuning.

Se-ResNet-50 Lastly we use a pretrained Se-Resnet-50 in our last experiment.
This network is trained on MS-Celeb-1M. The only difference between the archi-
tecture of this model and ResNet-50 is that "Squeeze-and-Excitation’ (SE) block
is added to the convolutional layers of the ResNet-50 followed by an embedding
of 256 dimension. SE block can be used with any standard architecture. The SE
block tries to use global information to selectively emphasize informative fea-
tures and suppress less useful once. In literal way, it tries to add weights to each
and every feature map in the layer.

3.3 Dataset Overlap

The datasets that were used to pretrain the models we are evaluating present
overlapping identities with the DFW test set. Despite containing the same identi-
ties, the face images do not need to be the same. Studying how each architecture
performs when evaluated on these identities will provide us with insight into the
ability of statistical models to retain and generalize previously acquired knowl-
edge when fitting a new distribution. Table [2] shows which dataset was used to
train each of the models we evaluate. Note that there are also identities from
DFW that overlap in more than one dataset: VGG-Face N MS-Celeb-1M = 145,
and VGG-Face2 N MS-Celeb-1M = T71.
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Table 3: Verification accuracy (%) of the different approaches and our results
(last 4 rows). Models are evaluated on protocol-1 (P1), protocol-2 (P2) and
protocol-3 (P3). Senet + Resnet50-ft represents an embedding of these two mod-
els

Algorithm GAR-P1 GAR-P2 GAR-P3
1% FAR]0.1% FAR[1% FAR[0.1% FAR[1% FAR[0.1% FAR

Baseline (VGG-Face)|| 55.29 28.91 34.32 17.58 36.25 19.35
AEFRL 96.08 | 57.64 | 8782 | 77.06 | 87.90 [ 75.54
DDRNET 84.20 | 51.26 | 71.04 | 49.28 | 71.43 | 49.08
MIRA-Face 95.46 | 51.09 [ 90.65 | 80.56 | 90.62 | 79.26
UMDNets 94.28 | 5327 [ 86.62 | 74.69 | 86.75 | 72.90
DisguiseNet 1.34'[] 134 [ 6632 | 2899 [ 60.89 [ 23.25
Resnet50 81.18 [ 5345 [ 75.63 | 55.16 | 75.92 [ 54.26
Resnet50-ft 83.70 | 49.92 [ 77.91 | 5837 | 78.00 [ 56.98
Senet 86.72 | 50.92 [ 78.93 | 60.39 | 79.07 | 58.92
Senet+Resnet50-ft [ 86.89 | 55.63 | 80.71 | 63.02 [ 80.89 | 61.12

4 Experiments and Results

In this section we present the different experiments and results obtained on every
DFW protocol over every overlapping set. We also present some hard examples
and an embedding visualization.

4.1 Performance on DFW

First, we evaluate and compare the different models on the standard dataset.
We use the Genuine Acceptance Rate (GAR) at False Acceptance Rate of 1%
and 0.1% (FAR), as defined in the original paper [14]. Table [3|shows the results
obtained by several algorithms in each of the DFW evaluation protocols. The
top performing methods do so well because they use models pretrained with over
5M images and fine-tune them on the DFW dataset for the face verification task.
Figure |2 shows the results of our experiments on each DFW protocol. It is clear
that the models obtain competitive results despite none of them being specifically
trained for this task, or fine-tuned in the DFW training set. This is, of course,
due to the aforementioned identity overlap and the high capacity of the models
used.

4.2 Dataset Overlapping Study

As presented on section the datasets that were used to pretrain the models
have overlapping identities with the DFW test set.

! GAR@0.95%FAR
2 The smallest FAR value is 0.95% for DisguiseNet
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(a) Protocol-1 (b) Protocol-2

1.0 — Senet + ResnetS0-ft
Senet

—— Resnet50-ft

0.8 ] — Resnets0
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(c) Protocol-3

Fig. 2: ROC Curves for every evaluated model on each DFW protocol

Model performance can vary significantly when evaluated on different subsets of
the data, mainly due to the difficulty of the image pairs from each subset. Despite
this, the overall performance is directly correlated with the model capacity and
the quantity of images seen during training. Table [4] presents the performance of
every evaluated model across different overlapping sets of identities. Scores on
overlapping sets of identities seen by the architecture during training are pre-
sented in bold. It is easy to understand that the models will perform better on
these subsets of the data.

Catastrophic forgetting in neural networks occurs because of the stability-plasticity
dilemma []. The model requires sufficient plasticity to acquire new tasks, but
large weight changes will cause forgetting by distributing previously learned
representations. A concrete example of catastrophic forgetting is when a net-
work is training on new tasks or categories, a neural network tends to forget the
information learned in the previous trained tasks from different domains. This
usually means a new task will likely override the weights that have been learned
in the past, and thus degrade the model performance for the past tasks. In this
work we show that as the domain of two task remains unchanged, the weight
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changes are small, therefore the improvement ratio of the fine-tuned ResNet over
the original model (Resnet50-ft vs Resnet50) remains constant (~ 3%) across
different overlapping sets. This effect indicates that the fine-tuned network is not
able to retain specific knowledge from the first distribution it was trained on (the
Ms-Celeb-1M dataset). If this were not the case, the fine-tuned network would
perform much better than the original model on this overlapping set. Therefore,
the overall improvement seems to arise solely from the increase in seen images.
Due to the intrinsic forgetness property of statistical models learning multiple
task from mutually exclusive domains, without forgetting all but one of them,
is unfeasible. However, this experiment shows that even when the domain of the
learned tasks are the same, the catastrophic forgetness problem persists. There-
fore, the forgetness problem seems to not only affect the fully connected layers
acting as classifiers, but also the deepest layers in charge of feature extraction.

Table 4: Performance (GARQ1%FAR) of every evaluated model across different
overlapping sets of subjects. The scores in bold indicate the performance of the
model on identities seen during training

Overlapping Set VGG | Resnet50 | Resnet50-ft | Senet
VGG-Face 39.63| 73.79 74.71 76.25
VGG-Face2 36.59 | 77.70 80.65 84.70

Ms-Celeb-1M 35.34 | 7397 75.64 76.66
VGG-Face N Ms-Celeb-1M |41.28 | 76.85 80.03 79.94
VGG-Face2 N Ms-Celeb-1M | 28.59 | 77.64 79.70 81.16

None Overlapping 35.14 | 75.84 77.60 78.79
All sets 36.25 | 75.92 78.00 79.07

4.3 Face Embedding Representation

The forgetness property can also be analyzed by projecting the face image em-
beddings of impostors and genuine subjects into a 2d space using t-SNE |[18].
All the face images were created by padding the provided face coordinates and
resizing the resulting bounding box maintaining aspect ratio with shorter side
of 256 and then center cropped to 224x224.

Note on Figure [3] how the embeddings of both Resnet50 architectures struggle
similarly to separate impostors from genuine subjects further evidencing our hy-
pothesis stating that the fine-tuned architecture has forgotten the faces it was
originally trained on. The apparently random distribution of both embeddings
also demonstrate the high level of complexity that the face verification task
represents.
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Fig. 3: Embedding representation of Genuine and impostor subjects that overlap
with the MS-Celeb-1M dataset

Fig.4: The pairs consistently misclassified by every model. These are genuine
pairs that were labeled as an impostor pair (false negatives). All the pairs have
been extracted from Protocol-3, since it is the one that comprises every possible
pair.

4.4 Visualizing Hard Examples

To shed some light into the difficulty of the face verification task in the DFW
dataset, we show some examples of pairs commonly misclassified by every ar-
chitecture on Protocol-3. Figure {4] shows some hard genuine pairs. Note how
often the misclassified genuine pairs represent drastic changes in face structure,
pose and texture. This makes it notoriously hard, even for humans, to correctly
classify these pairs.

5 Conclusions

In this study we show that the intrinsic forgetness property of neural networks is
not only present when performing classification but also when extracting features
for similar tasks sharing the same domain. After the fine-tuning process, even
powerful architectures like Resnet50 will fail to remember the distribution they
first learned.
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In our experiments, we observe that the model that has been pretrained on
MS-Celeb-1M and then fine-tuned on VGG-dataset-2, has a relatively constant
improvement across different overlapping subsets of identities. This behaviour
indicates that the model has forgotten some specifics about the previously fitted
distribution to accommodate a new one. The consistent gain in accuracy across
different overlapping subsets is solely due to the larger amount of seen images.
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