toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Patricia Suarez; Angel Sappa edit  url
openurl 
  Title A Generative Model for Guided Thermal Image Super-Resolution Type Conference Article
  Year (down) 2024 Publication 19th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract This paper presents a novel approach for thermal super-resolution based on a fusion prior, low-resolution thermal image and H brightness channel of the corresponding visible spectrum image. The method combines bicubic interpolation of the ×8 scale target image with the brightness component. To enhance the guidance process, the original RGB image is converted to HSV, and the brightness channel is extracted. Bicubic interpolation is then applied to the low-resolution thermal image, resulting in a Bicubic-Brightness channel blend. This luminance-bicubic fusion is used as an input image to help the training process. With this fused image, the cyclic adversarial generative network obtains high-resolution thermal image results. Experimental evaluations show that the proposed approach significantly improves spatial resolution and pixel intensity levels compared to other state-of-the-art techniques, making it a promising method to obtain high-resolution thermal.  
  Address Roma; Italia; February 2024  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference VISAPP  
  Notes MSIAU Approved no  
  Call Number Admin @ si @ SuS2024 Serial 4002  
Permanent link to this record
 

 
Author Hector Laria Mantecon; Kai Wang; Joost Van de Weijer; Bogdan Raducanu; Kai Wang edit  url
openurl 
  Title NeRF-Diffusion for 3D-Consistent Face Generation and Editing Type Conference Article
  Year (down) 2024 Publication 19th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Generating high-fidelity 3D-aware images without 3D supervision is a valuable capability in various applications. Current methods based on NeRF features, SDF information, or triplane features have limited variation after training. To address this, we propose a novel approach that combines pretrained models for shape and content generation. Our method leverages a pretrained Neural Radiance Field as a shape prior and a diffusion model for content generation. By conditioning the diffusion model with 3D features, we enhance its ability to generate novel views with 3D awareness. We introduce a consistency token shared between the NeRF module and the diffusion model to maintain 3D consistency during sampling. Moreover, our framework allows for text editing of 3D-aware image generation, enabling users to modify the style over 3D views while preserving semantic content. Our contributions include incorporating 3D awareness into a text-to-image model, addressing identity consistency in 3D view synthesis, and enabling text editing of 3D-aware image generation. We provide detailed explanations, including the shape prior based on the NeRF model and the content generation process using the diffusion model. We also discuss challenges such as shape consistency and sampling saturation. Experimental results demonstrate the effectiveness and visual quality of our approach.  
  Address Roma; Italia; February 2024  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference VISAPP  
  Notes LAMP Approved no  
  Call Number Admin @ si @ LWW2024 Serial 4003  
Permanent link to this record
 

 
Author Marcos V Conde; Javier Vazquez; Michael S Brown; Radu TImofte edit   pdf
url  openurl
  Title NILUT: Conditional Neural Implicit 3D Lookup Tables for Image Enhancement Type Conference Article
  Year (down) 2024 Publication 38th AAAI Conference on Artificial Intelligence Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract 3D lookup tables (3D LUTs) are a key component for image enhancement. Modern image signal processors (ISPs) have dedicated support for these as part of the camera rendering pipeline. Cameras typically provide multiple options for picture styles, where each style is usually obtained by applying a unique handcrafted 3D LUT. Current approaches for learning and applying 3D LUTs are notably fast, yet not so memory-efficient, as storing multiple 3D LUTs is required. For this reason and other implementation limitations, their use on mobile devices is less popular. In this work, we propose a Neural Implicit LUT (NILUT), an implicitly defined continuous 3D color transformation parameterized by a neural network. We show that NILUTs are capable of accurately emulating real 3D LUTs. Moreover, a NILUT can be extended to incorporate multiple styles into a single network with the ability to blend styles implicitly. Our novel approach is memory-efficient, controllable and can complement previous methods, including learned ISPs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference AAAI  
  Notes CIC; MACO Approved no  
  Call Number Admin @ si @ CVB2024 Serial 3872  
Permanent link to this record
 

 
Author Alloy Das; Sanket Biswas; Umapada Pal; Josep Llados edit   pdf
url  openurl
  Title Diving into the Depths of Spotting Text in Multi-Domain Noisy Scenes Type Conference Article
  Year (down) 2024 Publication IEEE International Conference on Robotics and Automation in PACIFICO Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract When used in a real-world noisy environment, the capacity to generalize to multiple domains is essential for any autonomous scene text spotting system. However, existing state-of-the-art methods employ pretraining and fine-tuning strategies on natural scene datasets, which do not exploit the feature interaction across other complex domains. In this work, we explore and investigate the problem of domain-agnostic scene text spotting, i.e., training a model on multi-domain source data such that it can directly generalize to target domains rather than being specialized for a specific domain or scenario. In this regard, we present the community a text spotting validation benchmark called Under-Water Text (UWT) for noisy underwater scenes to establish an important case study. Moreover, we also design an efficient super-resolution based end-to-end transformer baseline called DA-TextSpotter which achieves comparable or superior performance over existing text spotting architectures for both regular and arbitrary-shaped scene text spotting benchmarks in terms of both accuracy and model efficiency. The dataset, code and pre-trained models will be released upon acceptance.  
  Address Yokohama; Japan; May 2024  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICRA  
  Notes DAG Approved no  
  Call Number Admin @ si @ DBP2024 Serial 3979  
Permanent link to this record
 

 
Author Alloy Das; Sanket Biswas; Ayan Banerjee; Josep Llados; Umapada Pal; Saumik Bhattacharya edit   pdf
url  openurl
  Title Harnessing the Power of Multi-Lingual Datasets for Pre-training: Towards Enhancing Text Spotting Performance Type Conference Article
  Year (down) 2024 Publication Winter Conference on Applications of Computer Vision Abbreviated Journal  
  Volume Issue Pages 718-728  
  Keywords  
  Abstract The adaptation capability to a wide range of domains is crucial for scene text spotting models when deployed to real-world conditions. However, existing state-of-the-art (SOTA) approaches usually incorporate scene text detection and recognition simply by pretraining on natural scene text datasets, which do not directly exploit the intermediate feature representations between multiple domains. Here, we investigate the problem of domain-adaptive scene text spotting, i.e., training a model on multi-domain source data such that it can directly adapt to target domains rather than being specialized for a specific domain or scenario. Further, we investigate a transformer baseline called Swin-TESTR to focus on solving scene-text spotting for both regular and arbitrary-shaped scene text along with an exhaustive evaluation. The results clearly demonstrate the potential of intermediate representations to achieve significant performance on text spotting benchmarks across multiple domains (e.g. language, synth-to-real, and documents). both in terms of accuracy and efficiency.  
  Address Waikoloa; Hawai; USA; January 2024  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WACV  
  Notes DAG Approved no  
  Call Number Admin @ si @ DBB2024 Serial 3986  
Permanent link to this record
 

 
Author Alex Gomez-Villa; Bartlomiej Twardowski; Kai Wang; Joost van de Weijer edit   pdf
url  openurl
  Title Plasticity-Optimized Complementary Networks for Unsupervised Continual Learning Type Conference Article
  Year (down) 2024 Publication Winter Conference on Applications of Computer Vision Abbreviated Journal  
  Volume Issue Pages 1690-1700  
  Keywords  
  Abstract Continuous unsupervised representation learning (CURL) research has greatly benefited from improvements in self-supervised learning (SSL) techniques. As a result, existing CURL methods using SSL can learn high-quality representations without any labels, but with a notable performance drop when learning on a many-tasks data stream. We hypothesize that this is caused by the regularization losses that are imposed to prevent forgetting, leading to a suboptimal plasticity-stability trade-off: they either do not adapt fully to the incoming data (low plasticity), or incur significant forgetting when allowed to fully adapt to a new SSL pretext-task (low stability). In this work, we propose to train an expert network that is relieved of the duty of keeping the previous knowledge and can focus on performing optimally on the new tasks (optimizing plasticity). In the second phase, we combine this new knowledge with the previous network in an adaptation-retrospection phase to avoid forgetting and initialize a new expert with the knowledge of the old network. We perform several experiments showing that our proposed approach outperforms other CURL exemplar-free methods in few- and many-task split settings. Furthermore, we show how to adapt our approach to semi-supervised continual learning (Semi-SCL) and show that we surpass the accuracy of other exemplar-free Semi-SCL methods and reach the results of some others that use exemplars.  
  Address Waikoloa; Hawai; USA; January 2024  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WACV  
  Notes LAMP Approved no  
  Call Number Admin @ si @ GTW2024 Serial 3989  
Permanent link to this record
 

 
Author Sergi Garcia Bordils; Dimosthenis Karatzas; Marçal Rusiñol edit   pdf
url  openurl
  Title STEP – Towards Structured Scene-Text Spotting Type Conference Article
  Year (down) 2024 Publication Winter Conference on Applications of Computer Vision Abbreviated Journal  
  Volume Issue Pages 883-892  
  Keywords  
  Abstract We introduce the structured scene-text spotting task, which requires a scene-text OCR system to spot text in the wild according to a query regular expression. Contrary to generic scene text OCR, structured scene-text spotting seeks to dynamically condition both scene text detection and recognition on user-provided regular expressions. To tackle this task, we propose the Structured TExt sPotter (STEP), a model that exploits the provided text structure to guide the OCR process. STEP is able to deal with regular expressions that contain spaces and it is not bound to detection at the word-level granularity. Our approach enables accurate zero-shot structured text spotting in a wide variety of real-world reading scenarios and is solely trained on publicly available data. To demonstrate the effectiveness of our approach, we introduce a new challenging test dataset that contains several types of out-of-vocabulary structured text, reflecting important reading applications of fields such as prices, dates, serial numbers, license plates etc. We demonstrate that STEP can provide specialised OCR performance on demand in all tested scenarios.  
  Address Waikoloa; Hawai; USA; January 2024  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WACV  
  Notes DAG Approved no  
  Call Number Admin @ si @ GKR2024 Serial 3992  
Permanent link to this record
 

 
Author Hunor Laczko; Meysam Madadi; Sergio Escalera; Jordi Gonzalez edit   pdf
url  openurl
  Title A Generative Multi-Resolution Pyramid and Normal-Conditioning 3D Cloth Draping Type Conference Article
  Year (down) 2024 Publication Winter Conference on Applications of Computer Vision Abbreviated Journal  
  Volume Issue Pages 8709-8718  
  Keywords  
  Abstract RGB cloth generation has been deeply studied in the related literature, however, 3D garment generation remains an open problem. In this paper, we build a conditional variational autoencoder for 3D garment generation and draping. We propose a pyramid network to add garment details progressively in a canonical space, i.e. unposing and unshaping the garments w.r.t. the body. We study conditioning the network on surface normal UV maps, as an intermediate representation, which is an easier problem to optimize than 3D coordinates. Our results on two public datasets, CLOTH3D and CAPE, show that our model is robust, controllable in terms of detail generation by the use of multi-resolution pyramids, and achieves state-of-the-art results that can highly generalize to unseen garments, poses, and shapes even when training with small amounts of data.  
  Address Waikoloa; Hawai; USA; January 2024  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WACV  
  Notes ISE; HUPBA Approved no  
  Call Number Admin @ si @ LME2024 Serial 3996  
Permanent link to this record
 

 
Author Justine Giroux; Mohammad Reza Karimi Dastjerdi; Yannick Hold-Geoffroy; Javier Vazquez; Jean François Lalonde edit   pdf
url  openurl
  Title Towards a Perceptual Evaluation Framework for Lighting Estimation Type Conference Article
  Year (down) 2024 Publication Arxiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract rogress in lighting estimation is tracked by computing existing image quality assessment (IQA) metrics on images from standard datasets. While this may appear to be a reasonable approach, we demonstrate that doing so does not correlate to human preference when the estimated lighting is used to relight a virtual scene into a real photograph. To study this, we design a controlled psychophysical experiment where human observers must choose their preference amongst rendered scenes lit using a set of lighting estimation algorithms selected from the recent literature, and use it to analyse how these algorithms perform according to human perception. Then, we demonstrate that none of the most popular IQA metrics from the literature, taken individually, correctly represent human perception. Finally, we show that by learning a combination of existing IQA metrics, we can more accurately represent human preference. This provides a new perceptual framework to help evaluate future lighting estimation algorithms.  
  Address Seattle; USA; June 2024  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPR  
  Notes MACO; CIC Approved no  
  Call Number Admin @ si @ GDH2024 Serial 3999  
Permanent link to this record
 

 
Author Mohamed Ramzy Ibrahim; Robert Benavente; Daniel Ponsa; Felipe Lumbreras edit  url
openurl 
  Title SWViT-RRDB: Shifted Window Vision Transformer Integrating Residual in Residual Dense Block for Remote Sensing Super-Resolution Type Conference Article
  Year (down) 2024 Publication 19th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Remote sensing applications, impacted by acquisition season and sensor variety, require high-resolution images. Transformer-based models improve satellite image super-resolution but are less effective than convolutional neural networks (CNNs) at extracting local details, crucial for image clarity. This paper introduces SWViT-RRDB, a new deep learning model for satellite imagery super-resolution. The SWViT-RRDB, combining transformer with convolution and attention blocks, overcomes the limitations of existing models by better representing small objects in satellite images. In this model, a pipeline of residual fusion group (RFG) blocks is used to combine the multi-headed self-attention (MSA) with residual in residual dense block (RRDB). This combines global and local image data for better super-resolution. Additionally, an overlapping cross-attention block (OCAB) is used to enhance fusion and allow interaction between neighboring pixels to maintain long-range pixel dependencies across the image. The SWViT-RRDB model and its larger variants outperform state-of-the-art (SoTA) models on two different satellite datasets in terms of PSNR and SSIM.  
  Address Roma; Italia; February 2024  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MSIAU Approved no  
  Call Number Admin @ si @ RBP2024 Serial 4004  
Permanent link to this record
 

 
Author Asma Bensalah; Antonio Parziale; Giuseppe De Gregorio; Angelo Marcelli; Alicia Fornes; Josep Llados edit  url
doi  openurl
  Title I Can’t Believe It’s Not Better: In-air Movement for Alzheimer Handwriting Synthetic Generation Type Conference Article
  Year (down) 2023 Publication 21st International Graphonomics Conference Abbreviated Journal  
  Volume Issue Pages 136–148  
  Keywords  
  Abstract During recent years, there here has been a boom in terms of deep learning use for handwriting analysis and recognition. One main application for handwriting analysis is early detection and diagnosis in the health field. Unfortunately, most real case problems still suffer a scarcity of data, which makes difficult the use of deep learning-based models. To alleviate this problem, some works resort to synthetic data generation. Lately, more works are directed towards guided data synthetic generation, a generation that uses the domain and data knowledge to generate realistic data that can be useful to train deep learning models. In this work, we combine the domain knowledge about the Alzheimer’s disease for handwriting and use it for a more guided data generation. Concretely, we have explored the use of in-air movements for synthetic data generation.  
  Address Evora; Portugal; October 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference IGS  
  Notes DAG Approved no  
  Call Number Admin @ si @ BPG2023 Serial 3838  
Permanent link to this record
 

 
Author Simone Zini; Alex Gomez-Villa; Marco Buzzelli; Bartlomiej Twardowski; Andrew D. Bagdanov; Joost Van de Weijer edit   pdf
url  openurl
  Title Planckian Jitter: countering the color-crippling effects of color jitter on self-supervised training Type Conference Article
  Year (down) 2023 Publication 11th International Conference on Learning Representations Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Several recent works on self-supervised learning are trained by mapping different augmentations of the same image to the same feature representation. The data augmentations used are of crucial importance to the quality of learned feature representations. In this paper, we analyze how the color jitter traditionally used in data augmentation negatively impacts the quality of the color features in learned feature representations. To address this problem, we propose a more realistic, physics-based color data augmentation – which we call Planckian Jitter – that creates realistic variations in chromaticity and produces a model robust to illumination changes that can be commonly observed in real life, while maintaining the ability to discriminate image content based on color information. Experiments confirm that such a representation is complementary to the representations learned with the currently-used color jitter augmentation and that a simple concatenation leads to significant performance gains on a wide range of downstream datasets. In addition, we present a color sensitivity analysis that documents the impact of different training methods on model neurons and shows that the performance of the learned features is robust with respect to illuminant variations.  
  Address 1 -5 May 2023, Kigali, Ruanda  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICLR  
  Notes LAMP; 600.147; 611.008; 5300006 Approved no  
  Call Number Admin @ si @ ZGB2023 Serial 3820  
Permanent link to this record
 

 
Author German Barquero; Sergio Escalera; Cristina Palmero edit   pdf
url  openurl
  Title BeLFusion: Latent Diffusion for Behavior-Driven Human Motion Prediction Type Conference Article
  Year (down) 2023 Publication IEEE/CVF International Conference on Computer Vision (ICCV) Workshops Abbreviated Journal  
  Volume Issue Pages 2317-2327  
  Keywords  
  Abstract Stochastic human motion prediction (HMP) has generally been tackled with generative adversarial networks and variational autoencoders. Most prior works aim at predicting highly diverse movements in terms of the skeleton joints’ dispersion. This has led to methods predicting fast and motion-divergent movements, which are often unrealistic and incoherent with past motion. Such methods also neglect contexts that need to anticipate diverse low-range behaviors, or actions, with subtle joint displacements. To address these issues, we present BeLFusion, a model that, for the first time, leverages latent diffusion models in HMP to sample from a latent space where behavior is disentangled from pose and motion. As a result, diversity is encouraged from a behavioral perspective. Thanks to our behavior
coupler’s ability to transfer sampled behavior to ongoing motion, BeLFusion’s predictions display a variety of behaviors that are significantly more realistic than the state of the art. To support it, we introduce two metrics, the Area of
the Cumulative Motion Distribution, and the Average Pairwise Distance Error, which are correlated to our definition of realism according to a qualitative study with 126 participants. Finally, we prove BeLFusion’s generalization power in a new cross-dataset scenario for stochastic HMP.
 
  Address 2-6 October 2023. Paris (France)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICCV  
  Notes HUPBA; no menciona Approved no  
  Call Number Admin @ si @ BEP2023 Serial 3829  
Permanent link to this record
 

 
Author Yael Tudela; Ana Garcia Rodriguez; Gloria Fernandez Esparrach; Jorge Bernal edit  url
doi  openurl
  Title Towards Fine-Grained Polyp Segmentation and Classification Type Conference Article
  Year (down) 2023 Publication Workshop on Clinical Image-Based Procedures Abbreviated Journal  
  Volume 14242 Issue Pages 32-42  
  Keywords Medical image segmentation; Colorectal Cancer; Vision Transformer; Classification  
  Abstract Colorectal cancer is one of the main causes of cancer death worldwide. Colonoscopy is the gold standard screening tool as it allows lesion detection and removal during the same procedure. During the last decades, several efforts have been made to develop CAD systems to assist clinicians in lesion detection and classification. Regarding the latter, and in order to be used in the exploration room as part of resect and discard or leave-in-situ strategies, these systems must identify correctly all different lesion types. This is a challenging task, as the data used to train these systems presents great inter-class similarity, high class imbalance, and low representation of clinically relevant histology classes such as serrated sessile adenomas.

In this paper, a new polyp segmentation and classification method, Swin-Expand, is introduced. Based on Swin-Transformer, it uses a simple and lightweight decoder. The performance of this method has been assessed on a novel dataset, comprising 1126 high-definition images representing the three main histological classes. Results show a clear improvement in both segmentation and classification performance, also achieving competitive results when tested in public datasets. These results confirm that both the method and the data are important to obtain more accurate polyp representations.
 
  Address Vancouver; October 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference MICCAIW  
  Notes ISE Approved no  
  Call Number Admin @ si @ TGF2023 Serial 3837  
Permanent link to this record
 

 
Author Benjia Zhou; Zhigang Chen; Albert Clapes; Jun Wan; Yanyan Liang; Sergio Escalera; Zhen Lei; Du Zhang edit   pdf
url  doi
openurl 
  Title Gloss-free Sign Language Translation: Improving from Visual-Language Pretraining Type Conference Article
  Year (down) 2023 Publication IEEE/CVF International Conference on Computer Vision (ICCV) Workshops Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Sign Language Translation (SLT) is a challenging task due to its cross-domain nature, involving the translation of visual-gestural language to text. Many previous methods employ an intermediate representation, i.e., gloss sequences, to facilitate SLT, thus transforming it into a two-stage task of sign language recognition (SLR) followed by sign language translation (SLT). However, the scarcity of gloss-annotated sign language data, combined with the information bottleneck in the mid-level gloss representation, has hindered the further development of the SLT task. To address this challenge, we propose a novel Gloss-Free SLT based on Visual-Language Pretraining (GFSLT-VLP), which improves SLT by inheriting language-oriented prior knowledge from pre-trained models, without any gloss annotation assistance. Our approach involves two stages: (i) integrating Contrastive Language-Image Pre-training (CLIP) with masked self-supervised learning to create pre-tasks that bridge the semantic gap between visual and textual representations and restore masked sentences, and (ii) constructing an end-to-end architecture with an encoder-decoder-like structure that inherits the parameters of the pre-trained Visual Encoder and Text Decoder from the first stage. The seamless combination of these novel designs forms a robust sign language representation and significantly improves gloss-free sign language translation. In particular, we have achieved unprecedented improvements in terms of BLEU-4 score on the PHOENIX14T dataset (>+5) and the CSL-Daily dataset (>+3) compared to state-of-the-art gloss-free SLT methods. Furthermore, our approach also achieves competitive results on the PHOENIX14T dataset when compared with most of the gloss-based methods.  
  Address Vancouver; Canada; June 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICCVW  
  Notes HUPBA; Approved no  
  Call Number Admin @ si @ ZCC2023 Serial 3839  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: