|
Maria Vanrell, & Jordi Vitria. (1997). Optimal 3x3 decomposable disks for morphological transformations. Image and Vision Computing, 15(11), 845–854.
|
|
|
Fahad Shahbaz Khan, Muhammad Anwer Rao, Joost Van de Weijer, Michael Felsberg, & J.Laaksonen. (2015). Compact color texture description for texture classification. PRL - Pattern Recognition Letters, 51, 16–22.
Abstract: Describing textures is a challenging problem in computer vision and pattern recognition. The classification problem involves assigning a category label to the texture class it belongs to. Several factors such as variations in scale, illumination and viewpoint make the problem of texture description extremely challenging. A variety of histogram based texture representations exists in literature.
However, combining multiple texture descriptors and assessing their complementarity is still an open research problem. In this paper, we first show that combining multiple local texture descriptors significantly improves the recognition performance compared to using a single best method alone. This
gain in performance is achieved at the cost of high-dimensional final image representation. To counter this problem, we propose to use an information-theoretic compression technique to obtain a compact texture description without any significant loss in accuracy. In addition, we perform a comprehensive
evaluation of pure color descriptors, popular in object recognition, for the problem of texture classification. Experiments are performed on four challenging texture datasets namely, KTH-TIPS-2a, KTH-TIPS-2b, FMD and Texture-10. The experiments clearly demonstrate that our proposed compact multi-texture approach outperforms the single best texture method alone. In all cases, discriminative color names outperforms other color features for texture classification. Finally, we show that combining discriminative color names with compact texture representation outperforms state-of-the-art methods by 7:8%, 4:3% and 5:0% on KTH-TIPS-2a, KTH-TIPS-2b and Texture-10 datasets respectively.
|
|
|
Xavier Otazu, & Oriol Pujol. (2006). Wavelet based approach to cluster analysis. Application on low dimensional data sets. PRL - Pattern Recognition Letters, 27(14), 1590–1605.
|
|
|
T. Widemann, & Xavier Otazu. (2009). Titanias radius and an upper limit on its atmosphere from the September 8, 2001 stellar occultation. International Journal of Solar System Studies, 199(2), 458–476.
Abstract: On September 8, 2001 around 2 h UT, the largest uranian moon, Titania, occulted Hipparcos star 106829 (alias SAO 164538, a V=7.2, K0 III star). This was the first-ever observed occultation by this satellite, a rare event as Titania subtends only 0.11 arcsec on the sky. The star's unusual brightness allowed many observers, both amateurs or professionals, to monitor this unique event, providing fifty-seven occultations chords over three continents, all reported here. Selecting the best 27 occultation chords, and assuming a circular limb, we derive Titania's radius: View the MathML source (1-σ error bar). This implies a density of View the MathML source using the value View the MathML source derived by Taylor [Taylor, D.B., 1998. Astron. Astrophys. 330, 362–374]. We do not detect any significant difference between equatorial and polar radii, in the limit View the MathML source, in agreement with Voyager limb image retrieval during the 1986 flyby. Titania's offset with respect to the DE405 + URA027 (based on GUST86 theory) ephemeris is derived: ΔαTcos(δT)=−108±13 mas and ΔδT=−62±7 mas (ICRF J2000.0 system). Most of this offset is attributable to a Uranus' barycentric offset with respect to DE405, that we estimate to be: View the MathML source and ΔδU=−85±25 mas at the moment of occultation. This offset is confirmed by another Titania stellar occultation observed on August 1st, 2003, which provides an offset of ΔαTcos(δT)=−127±20 mas and ΔδT=−97±13 mas for the satellite. The combined ingress and egress data do not show any significant hint for atmospheric refraction, allowing us to set surface pressure limits at the level of 10–20 nbar. More specifically, we find an upper limit of 13 nbar (1-σ level) at 70 K and 17 nbar at 80 K, for a putative isothermal CO2 atmosphere. We also provide an upper limit of 8 nbar for a possible CH4 atmosphere, and 22 nbar for pure N2, again at the 1-σ level. We finally constrain the stellar size using the time-resolved star disappearance and reappearance at ingress and egress. We find an angular diameter of 0.54±0.03 mas (corresponding to View the MathML source projected at Titania). With a distance of 170±25 parsecs, this corresponds to a radius of 9.8±0.2 solar radii for HIP 106829, typical of a K0 III giant.
Keywords: Occultations; Uranus, satellites; Satellites, shapes; Satellites, dynamics; Ices; Satellites, atmospheres
|
|
|
Cesar de Souza, Adrien Gaidon, Yohann Cabon, Naila Murray, & Antonio Lopez. (2020). Generating Human Action Videos by Coupling 3D Game Engines and Probabilistic Graphical Models. IJCV - International Journal of Computer Vision, 128, 1505–1536.
Abstract: Deep video action recognition models have been highly successful in recent years but require large quantities of manually-annotated data, which are expensive and laborious to obtain. In this work, we investigate the generation of synthetic training data for video action recognition, as synthetic data have been successfully used to supervise models for a variety of other computer vision tasks. We propose an interpretable parametric generative model of human action videos that relies on procedural generation, physics models and other components of modern game engines. With this model we generate a diverse, realistic, and physically plausible dataset of human action videos, called PHAV for “Procedural Human Action Videos”. PHAV contains a total of 39,982 videos, with more than 1000 examples for each of 35 action categories. Our video generation approach is not limited to existing motion capture sequences: 14 of these 35 categories are procedurally-defined synthetic actions. In addition, each video is represented with 6 different data modalities, including RGB, optical flow and pixel-level semantic labels. These modalities are generated almost simultaneously using the Multiple Render Targets feature of modern GPUs. In order to leverage PHAV, we introduce a deep multi-task (i.e. that considers action classes from multiple datasets) representation learning architecture that is able to simultaneously learn from synthetic and real video datasets, even when their action categories differ. Our experiments on the UCF-101 and HMDB-51 benchmarks suggest that combining our large set of synthetic videos with small real-world datasets can boost recognition performance. Our approach also significantly outperforms video representations produced by fine-tuning state-of-the-art unsupervised generative models of videos.
Keywords: Procedural generation; Human action recognition; Synthetic data; Physics
|
|
|
Fahad Shahbaz Khan, Muhammad Anwer Rao, Joost Van de Weijer, Andrew Bagdanov, Antonio Lopez, & Michael Felsberg. (2013). Coloring Action Recognition in Still Images. IJCV - International Journal of Computer Vision, 105(3), 205–221.
Abstract: In this article we investigate the problem of human action recognition in static images. By action recognition we intend a class of problems which includes both action classification and action detection (i.e. simultaneous localization and classification). Bag-of-words image representations yield promising results for action classification, and deformable part models perform very well object detection. The representations for action recognition typically use only shape cues and ignore color information. Inspired by the recent success of color in image classification and object detection, we investigate the potential of color for action classification and detection in static images. We perform a comprehensive evaluation of color descriptors and fusion approaches for action recognition. Experiments were conducted on the three datasets most used for benchmarking action recognition in still images: Willow, PASCAL VOC 2010 and Stanford-40. Our experiments demonstrate that incorporating color information considerably improves recognition performance, and that a descriptor based on color names outperforms pure color descriptors. Our experiments demonstrate that late fusion of color and shape information outperforms other approaches on action recognition. Finally, we show that the different color–shape fusion approaches result in complementary information and combining them yields state-of-the-art performance for action classification.
|
|
|
Arjan Gijsenij, Theo Gevers, & Joost Van de Weijer. (2010). Generalized Gamut Mapping using Image Derivative Structures for Color Constancy. IJCV - International Journal of Computer Vision, 86(2-3), 127–139.
Abstract: The gamut mapping algorithm is one of the most promising methods to achieve computational color constancy. However, so far, gamut mapping algorithms are restricted to the use of pixel values to estimate the illuminant. Therefore, in this paper, gamut mapping is extended to incorporate the statistical nature of images. It is analytically shown that the proposed gamut mapping framework is able to include any linear filter output. The main focus is on the local n-jet describing the derivative structure of an image. It is shown that derivatives have the advantage over pixel values to be invariant to disturbing effects (i.e. deviations of the diagonal model) such as saturated colors and diffuse light. Further, as the n-jet based gamut mapping has the ability to use more information than pixel values alone, the combination of these algorithms are more stable than the regular gamut mapping algorithm. Different methods of combining are proposed. Based on theoretical and experimental results conducted on large scale data sets of hyperspectral, laboratory and realworld scenes, it can be derived that (1) in case of deviations of the diagonal model, the derivative-based approach outperforms the pixel-based gamut mapping, (2) state-of-the-art algorithms are outperformed by the n-jet based gamut mapping, (3) the combination of the different n-jet based gamut
|
|
|
Alicia Fornes, Josep Llados, Gemma Sanchez, Xavier Otazu, & Horst Bunke. (2010). A Combination of Features for Symbol-Independent Writer Identification in Old Music Scores. IJDAR - International Journal on Document Analysis and Recognition, 13(4), 243–259.
Abstract: The aim of writer identification is determining the writer of a piece of handwriting from a set of writers. In this paper, we present an architecture for writer identification in old handwritten music scores. Even though an important amount of music compositions contain handwritten text, the aim of our work is to use only music notation to determine the author. The main contribution is therefore the use of features extracted from graphical alphabets. Our proposal consists in combining the identification results of two different approaches, based on line and textural features. The steps of the ensemble architecture are the following. First of all, the music sheet is preprocessed for removing the staff lines. Then, music lines and texture images are generated for computing line features and textural features. Finally, the classification results are combined for identifying the writer. The proposed method has been tested on a database of old music scores from the seventeenth to nineteenth centuries, achieving a recognition rate of about 92% with 20 writers.
|
|
|
Maria Vanrell, Jordi Vitria, & Xavier Roca. (1997). A multidimensional scaling approach to explore the behavior of a texture perception algorithm. Machine Vision and Applications, 9, 262–271.
|
|
|
Lu Yu, Lichao Zhang, Joost Van de Weijer, Fahad Shahbaz Khan, Yongmei Cheng, & C. Alejandro Parraga. (2018). Beyond Eleven Color Names for Image Understanding. MVAP - Machine Vision and Applications, 29(2), 361–373.
Abstract: Color description is one of the fundamental problems of image understanding. One of the popular ways to represent colors is by means of color names. Most existing work on color names focuses on only the eleven basic color terms of the English language. This could be limiting the discriminative power of these representations, and representations based on more color names are expected to perform better. However, there exists no clear strategy to choose additional color names. We collect a dataset of 28 additional color names. To ensure that the resulting color representation has high discriminative power we propose a method to order the additional color names according to their complementary nature with the basic color names. This allows us to compute color name representations with high discriminative power of arbitrary length. In the experiments we show that these new color name descriptors outperform the existing color name descriptor on the task of visual tracking, person re-identification and image classification.
Keywords: Color name; Discriminative descriptors; Image classification; Re-identification; Tracking
|
|
|
Fahad Shahbaz Khan, Shida Beigpour, Joost Van de Weijer, & Michael Felsberg. (2014). Painting-91: A Large Scale Database for Computational Painting Categorization. MVAP - Machine Vision and Applications, 25(6), 1385–1397.
Abstract: Computer analysis of visual art, especially paintings, is an interesting cross-disciplinary research domain. Most of the research in the analysis of paintings involve medium to small range datasets with own specific settings. Interestingly, significant progress has been made in the field of object and scene recognition lately. A key factor in this success is the introduction and availability of benchmark datasets for evaluation. Surprisingly, such a benchmark setup is still missing in the area of computational painting categorization. In this work, we propose a novel large scale dataset of digital paintings. The dataset consists of paintings from 91 different painters. We further show three applications of our dataset namely: artist categorization, style classification and saliency detection. We investigate how local and global features popular in image classification perform for the tasks of artist and style categorization. For both categorization tasks, our experimental results suggest that combining multiple features significantly improves the final performance. We show that state-of-the-art computer vision methods can correctly classify 50 % of unseen paintings to its painter in a large dataset and correctly attribute its artistic style in over 60 % of the cases. Additionally, we explore the task of saliency detection on paintings and show experimental findings using state-of-the-art saliency estimation algorithms.
|
|
|
Fahad Shahbaz Khan, Joost Van de Weijer, Sadiq Ali, & Michael Felsberg. (2013). Evaluating the impact of color on texture recognition. In 15th International Conference on Computer Analysis of Images and Patterns (Vol. 8047, pp. 154–162). Springer Berlin Heidelberg.
Abstract: State-of-the-art texture descriptors typically operate on grey scale images while ignoring color information. A common way to obtain a joint color-texture representation is to combine the two visual cues at the pixel level. However, such an approach provides sub-optimal results for texture categorisation task.
In this paper we investigate how to optimally exploit color information for texture recognition. We evaluate a variety of color descriptors, popular in image classification, for texture categorisation. In addition we analyze different fusion approaches to combine color and texture cues. Experiments are conducted on the challenging scenes and 10 class texture datasets. Our experiments clearly suggest that in all cases color names provide the best performance. Late fusion is the best strategy to combine color and texture. By selecting the best color descriptor with optimal fusion strategy provides a gain of 5% to 8% compared to texture alone on scenes and texture datasets.
Keywords: Color; Texture; image representation
|
|
|
Joost Van de Weijer, & Fahad Shahbaz Khan. (2013). Fusing Color and Shape for Bag-of-Words Based Object Recognition. In 4th Computational Color Imaging Workshop (Vol. 7786, pp. 25–34). Springer Berlin Heidelberg.
Abstract: In this article we provide an analysis of existing methods for the incorporation of color in bag-of-words based image representations. We propose a list of desired properties on which bases fusing methods can be compared. We discuss existing methods and indicate shortcomings of the two well-known fusing methods, namely early and late fusion. Several recent works have addressed these shortcomings by exploiting top-down information in the bag-of-words pipeline: color attention which is motivated from human vision, and Portmanteau vocabularies which are based on information theoretic compression of product vocabularies. We point out several remaining challenges in cue fusion and provide directions for future research.
Keywords: Object Recognition; color features; bag-of-words; image classification
|
|
|
Abel Gonzalez-Garcia, Robert Benavente, Olivier Penacchio, Javier Vazquez, Maria Vanrell, & C. Alejandro Parraga. (2013). Coloresia: An Interactive Colour Perception Device for the Visually Impaired. In Multimodal Interaction in Image and Video Applications (Vol. 48, pp. 47–66). Springer Berlin Heidelberg.
Abstract: A significative percentage of the human population suffer from impairments in their capacity to distinguish or even see colours. For them, everyday tasks like navigating through a train or metro network map becomes demanding. We present a novel technique for extracting colour information from everyday natural stimuli and presenting it to visually impaired users as pleasant, non-invasive sound. This technique was implemented inside a Personal Digital Assistant (PDA) portable device. In this implementation, colour information is extracted from the input image and categorised according to how human observers segment the colour space. This information is subsequently converted into sound and sent to the user via speakers or headphones. In the original implementation, it is possible for the user to send its feedback to reconfigure the system, however several features such as these were not implemented because the current technology is limited.We are confident that the full implementation will be possible in the near future as PDA technology improves.
|
|
|
Joost Van de Weijer, Fahad Shahbaz Khan, & Marc Masana. (2013). Interactive Visual and Semantic Image Retrieval. In Angel Sappa, & Jordi Vitria (Eds.), Multimodal Interaction in Image and Video Applications (Vol. 48, pp. 31–35). Springer Berlin Heidelberg.
Abstract: One direct consequence of recent advances in digital visual data generation and the direct availability of this information through the World-Wide Web, is a urgent demand for efficient image retrieval systems. The objective of image retrieval is to allow users to efficiently browse through this abundance of images. Due to the non-expert nature of the majority of the internet users, such systems should be user friendly, and therefore avoid complex user interfaces. In this chapter we investigate how high-level information provided by recently developed object recognition techniques can improve interactive image retrieval. Wel apply a bagof- word based image representation method to automatically classify images in a number of categories. These additional labels are then applied to improve the image retrieval system. Next to these high-level semantic labels, we also apply a low-level image description to describe the composition and color scheme of the scene. Both descriptions are incorporated in a user feedback image retrieval setting. The main objective is to show that automatic labeling of images with semantic labels can improve image retrieval results.
|
|
|
Susana Alvarez, Anna Salvatella, Maria Vanrell, & Xavier Otazu. (2010). 3D Texton Spaces for color-texture retrieval. In A.C. Campilho and M.S. Kamel (Ed.), 7th International Conference on Image Analysis and Recognition (Vol. 6111, 354–363). LNCS. Springer Berlin Heidelberg.
Abstract: Color and texture are visual cues of different nature, their integration in an useful visual descriptor is not an easy problem. One way to combine both features is to compute spatial texture descriptors independently on each color channel. Another way is to do the integration at the descriptor level. In this case the problem of normalizing both cues arises. In this paper we solve the latest problem by fusing color and texture through distances in texton spaces. Textons are the attributes of image blobs and they are responsible for texture discrimination as defined in Julesz’s Texton theory. We describe them in two low-dimensional and uniform spaces, namely, shape and color. The dissimilarity between color texture images is computed by combining the distances in these two spaces. Following this approach, we propose our TCD descriptor which outperforms current state of art methods in the two different approaches mentioned above, early combination with LBP and late combination with MPEG-7. This is done on an image retrieval experiment over a highly diverse texture dataset from Corel.
|
|
|
Agnes Borras, Francesc Tous, Josep Llados, & Maria Vanrell. (2003). High-Level Clothes Description Based on Colour-Texture and Structural Features. In 1rst. Iberian Conference on Pattern Recognition and Image Analysis IbPRIA 2003 (Vol. 2652, pp. 108–116). LNCS.
Abstract: ecture Notes in Computer Science 2652 108–116
|
|
|
Anna Salvatella, Maria Vanrell, & Ramon Baldrich. (2003). Subtexture Components for Texture Description. In 1rst. Iberian Conference on Pattern Recognition and Image Analysis IbPRIA 2003 (Vol. 2652, pp. 884–892). LNCS.
|
|