toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Guillermo Torres; Sonia Baeza; Carles Sanchez; Ignasi Guasch; Antoni Rosell; Debora Gil edit  doi
openurl 
  Title An Intelligent Radiomic Approach for Lung Cancer Screening Type Journal Article
  Year 2022 Publication Applied Sciences Abbreviated Journal APPLSCI  
  Volume 12 Issue 3 Pages 1568  
  Keywords Lung cancer; Early diagnosis; Screening; Neural networks; Image embedding; Architecture optimization  
  Abstract The efficiency of lung cancer screening for reducing mortality is hindered by the high rate of false positives. Artificial intelligence applied to radiomics could help to early discard benign cases from the analysis of CT scans. The available amount of data and the fact that benign cases are a minority, constitutes a main challenge for the successful use of state of the art methods (like deep learning), which can be biased, over-fitted and lack of clinical reproducibility. We present an hybrid approach combining the potential of radiomic features to characterize nodules in CT scans and the generalization of the feed forward networks. In order to obtain maximal reproducibility with minimal training data, we propose an embedding of nodules based on the statistical significance of radiomic features for malignancy detection. This representation space of lesions is the input to a feed
forward network, which architecture and hyperparameters are optimized using own-defined metrics of the diagnostic power of the whole system. Results of the best model on an independent set of patients achieve 100% of sensitivity and 83% of specificity (AUC = 0.94) for malignancy detection.
 
  Address Jan 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; 600.139; 600.145 Approved no  
  Call Number Admin @ si @ TBS2022 Serial 3699  
Permanent link to this record
 

 
Author Carles Onielfa; Carles Casacuberta; Sergio Escalera edit  doi
openurl 
  Title Influence in Social Networks Through Visual Analysis of Image Memes Type Conference Article
  Year 2022 Publication Artificial Intelligence Research and Development Abbreviated Journal  
  Volume 356 Issue Pages 71-80  
  Keywords  
  Abstract Memes evolve and mutate through their diffusion in social media. They have the potential to propagate ideas and, by extension, products. Many studies have focused on memes, but none so far, to our knowledge, on the users that post them, their relationships, and the reach of their influence. In this article, we define a meme influence graph together with suitable metrics to visualize and quantify influence between users who post memes, and we also describe a process to implement our definitions using a new approach to meme detection based on text-to-image area ratio and contrast. After applying our method to a set of users of the social media platform Instagram, we conclude that our metrics add information to already existing user characteristics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA; no menciona Approved no  
  Call Number Admin @ si @ OCE2022 Serial 3799  
Permanent link to this record
 

 
Author Penny Tarling; Mauricio Cantor; Albert Clapes; Sergio Escalera edit  doi
openurl 
  Title Deep learning with self-supervision and uncertainty regularization to count fish in underwater images Type Journal Article
  Year 2022 Publication PloS One Abbreviated Journal Plos  
  Volume 17 Issue 5 Pages e0267759  
  Keywords  
  Abstract Effective conservation actions require effective population monitoring. However, accurately counting animals in the wild to inform conservation decision-making is difficult. Monitoring populations through image sampling has made data collection cheaper, wide-reaching and less intrusive but created a need to process and analyse this data efficiently. Counting animals from such data is challenging, particularly when densely packed in noisy images. Attempting this manually is slow and expensive, while traditional computer vision methods are limited in their generalisability. Deep learning is the state-of-the-art method for many computer vision tasks, but it has yet to be properly explored to count animals. To this end, we employ deep learning, with a density-based regression approach, to count fish in low-resolution sonar images. We introduce a large dataset of sonar videos, deployed to record wild Lebranche mullet schools (Mugil liza), with a subset of 500 labelled images. We utilise abundant unlabelled data in a self-supervised task to improve the supervised counting task. For the first time in this context, by introducing uncertainty quantification, we improve model training and provide an accompanying measure of prediction uncertainty for more informed biological decision-making. Finally, we demonstrate the generalisability of our proposed counting framework through testing it on a recent benchmark dataset of high-resolution annotated underwater images from varying habitats (DeepFish). From experiments on both contrasting datasets, we demonstrate our network outperforms the few other deep learning models implemented for solving this task. By providing an open-source framework along with training data, our study puts forth an efficient deep learning template for crowd counting aquatic animals thereby contributing effective methods to assess natural populations from the ever-increasing visual data.  
  Address  
  Corporate Author Thesis  
  Publisher Public Library of Science Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA Approved no  
  Call Number Admin @ si @ TCC2022 Serial 3743  
Permanent link to this record
 

 
Author Sonia Baeza; Debora Gil; I.Garcia Olive; M.Salcedo; J.Deportos; Carles Sanchez; Guillermo Torres; G.Moragas; Antoni Rosell edit  doi
openurl 
  Title A novel intelligent radiomic analysis of perfusion SPECT/CT images to optimize pulmonary embolism diagnosis in COVID-19 patients Type Journal Article
  Year 2022 Publication EJNMMI Physics Abbreviated Journal EJNMMI-PHYS  
  Volume 9 Issue 1, Article 84 Pages 1-17  
  Keywords  
  Abstract Background: COVID-19 infection, especially in cases with pneumonia, is associated with a high rate of pulmonary embolism (PE). In patients with contraindications for CT pulmonary angiography (CTPA) or non-diagnostic CTPA, perfusion single-photon emission computed tomography/computed tomography (Q-SPECT/CT) is a diagnostic alternative. The goal of this study is to develop a radiomic diagnostic system to detect PE based only on the analysis of Q-SPECT/CT scans.
Methods: This radiomic diagnostic system is based on a local analysis of Q-SPECT/CT volumes that includes both CT and Q-SPECT values for each volume point. We present a combined approach that uses radiomic features extracted from each scan as input into a fully connected classifcation neural network that optimizes a weighted crossentropy loss trained to discriminate between three diferent types of image patterns (pixel sample level): healthy lungs (control group), PE and pneumonia. Four types of models using diferent confguration of parameters were tested.
Results: The proposed radiomic diagnostic system was trained on 20 patients (4,927 sets of samples of three types of image patterns) and validated in a group of 39 patients (4,410 sets of samples of three types of image patterns). In the training group, COVID-19 infection corresponded to 45% of the cases and 51.28% in the test group. In the test group, the best model for determining diferent types of image patterns with PE presented a sensitivity, specifcity, positive predictive value and negative predictive value of 75.1%, 98.2%, 88.9% and 95.4%, respectively. The best model for detecting
pneumonia presented a sensitivity, specifcity, positive predictive value and negative predictive value of 94.1%, 93.6%, 85.2% and 97.6%, respectively. The area under the curve (AUC) was 0.92 for PE and 0.91 for pneumonia. When the results obtained at the pixel sample level are aggregated into regions of interest, the sensitivity of the PE increases to 85%, and all metrics improve for pneumonia.
Conclusion: This radiomic diagnostic system was able to identify the diferent lung imaging patterns and is a frst step toward a comprehensive intelligent radiomic system to optimize the diagnosis of PE by Q-SPECT/CT.
 
  Address 5 dec 2022  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number Admin @ si @ BGG2022 Serial 3759  
Permanent link to this record
 

 
Author Xavier Otazu; Xim Cerda-Company edit  doi
openurl 
  Title The contribution of luminance and chromatic channels to color assimilation Type Journal Article
  Year 2022 Publication Journal of Vision Abbreviated Journal JOV  
  Volume 22(6) Issue 10 Pages 1-15  
  Keywords  
  Abstract Color induction is the phenomenon where the physical and the perceived colors of an object differ owing to the color distribution and the spatial configuration of the surrounding objects. Previous works studying this phenomenon on the lsY MacLeod–Boynton color space, show that color assimilation is present only when the magnocellular pathway (i.e., the Y axis) is activated (i.e., when there are luminance differences). Concretely, the authors showed that the effect is mainly induced by the koniocellular pathway (s axis), but not by the parvocellular pathway (l axis), suggesting that when magnocellular pathway is activated it inhibits the koniocellular pathway. In the present work, we study whether parvo-, konio-, and magnocellular pathways may influence on each other through the color induction effect. Our results show that color assimilation does not depend on a chromatic–chromatic interaction, and that chromatic assimilation is driven by the interaction between luminance and chromatic channels (mainly the magno- and the koniocellular pathways). Our results also show that chromatic induction is greatly decreased when all three visual pathways are simultaneously activated, and that chromatic pathways could influence each other through the magnocellular (luminance) pathway. In addition, we observe that chromatic channels can influence the luminance channel, hence inducing a small brightness induction. All these results show that color induction is a highly complex process where interactions between the several visual pathways are yet unknown and should be studied in greater detail.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Neurobit; 600.128; 600.120; 600.158 Approved no  
  Call Number Admin @ si @ OtC2022 Serial 3685  
Permanent link to this record
 

 
Author David Berga; Xavier Otazu edit  doi
openurl 
  Title A neurodynamic model of saliency prediction in v1 Type Journal Article
  Year 2022 Publication Neural Computation Abbreviated Journal NEURALCOMPUT  
  Volume 34 Issue 2 Pages 378-414  
  Keywords  
  Abstract Lateral connections in the primary visual cortex (V1) have long been hypothesized to be responsible for several visual processing mechanisms such as brightness induction, chromatic induction, visual discomfort, and bottom-up visual attention (also named saliency). Many computational models have been developed to independently predict these and other visual processes, but no computational model has been able to reproduce all of them simultaneously. In this work, we show that a biologically plausible computational model of lateral interactions of V1 is able to simultaneously predict saliency and all the aforementioned visual processes. Our model's architecture (NSWAM) is based on Penacchio's neurodynamic model of lateral connections of V1. It is defined as a network of firing rate neurons, sensitive to visual features such as brightness, color, orientation, and scale. We tested NSWAM saliency predictions using images from several eye tracking data sets. We show that the accuracy of predictions obtained by our architecture, using shuffled metrics, is similar to other state-of-the-art computational methods, particularly with synthetic images (CAT2000-Pattern and SID4VAM) that mainly contain low-level features. Moreover, we outperform other biologically inspired saliency models that are specifically designed to exclusively reproduce saliency. We show that our biologically plausible model of lateral connections can simultaneously explain different visual processes present in V1 (without applying any type of training or optimization and keeping the same parameterization for all the visual processes). This can be useful for the definition of a unified architecture of the primary visual cortex.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes NEUROBIT; 600.128; 600.120 Approved no  
  Call Number Admin @ si @ BeO2022 Serial 3696  
Permanent link to this record
 

 
Author Hugo Bertiche; Meysam Madadi; Sergio Escalera edit  doi
openurl 
  Title Neural Cloth Simulation Type Journal Article
  Year 2022 Publication ACM Transactions on Graphics Abbreviated Journal ACMTGraph  
  Volume 41 Issue 6 Pages 1-14  
  Keywords  
  Abstract We present a general framework for the garment animation problem through unsupervised deep learning inspired in physically based simulation. Existing trends in the literature already explore this possibility. Nonetheless, these approaches do not handle cloth dynamics. Here, we propose the first methodology able to learn realistic cloth dynamics unsupervisedly, and henceforth, a general formulation for neural cloth simulation. The key to achieve this is to adapt an existing optimization scheme for motion from simulation based methodologies to deep learning. Then, analyzing the nature of the problem, we devise an architecture able to automatically disentangle static and dynamic cloth subspaces by design. We will show how this improves model performance. Additionally, this opens the possibility of a novel motion augmentation technique that greatly improves generalization. Finally, we show it also allows to control the level of motion in the predictions. This is a useful, never seen before, tool for artists. We provide of detailed analysis of the problem to establish the bases of neural cloth simulation and guide future research into the specifics of this domain.



ACM Transactions on GraphicsVolume 41Issue 6December 2022 Article No.: 220pp 1–
 
  Address Dec 2022  
  Corporate Author Thesis  
  Publisher ACM Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Admin @ si @ BME2022b Serial 3779  
Permanent link to this record
 

 
Author Wenjuan Gong; Zhang Yue; Wei Wang; Cheng Peng; Jordi Gonzalez edit  doi
openurl 
  Title Meta-MMFNet: Meta-Learning Based Multi-Model Fusion Network for Micro-Expression Recognition Type Journal Article
  Year 2022 Publication ACM Transactions on Multimedia Computing, Communications, and Applications Abbreviated Journal ACMTMC  
  Volume Issue Pages  
  Keywords Feature Fusion; Model Fusion; Meta-Learning; Micro-Expression Recognition  
  Abstract Despite its wide applications in criminal investigations and clinical communications with patients suffering from autism, automatic micro-expression recognition remains a challenging problem because of the lack of training data and imbalanced classes problems. In this study, we proposed a meta-learning based multi-model fusion network (Meta-MMFNet) to solve the existing problems. The proposed method is based on the metric-based meta-learning pipeline, which is specifically designed for few-shot learning and is suitable for model-level fusion. The frame difference and optical flow features were fused, deep features were extracted from the fused feature, and finally in the meta-learning-based framework, weighted sum model fusion method was applied for micro-expression classification. Meta-MMFNet achieved better results than state-of-the-art methods on four datasets. The code is available at https://github.com/wenjgong/meta-fusion-based-method.  
  Address May 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ISE; 600.157 Approved no  
  Call Number Admin @ si @ GYW2022 Serial 3692  
Permanent link to this record
 

 
Author Alex Falcon; Swathikiran Sudhakaran; Giuseppe Serra; Sergio Escalera; Oswald Lanz edit   pdf
doi  openurl
  Title Relevance-based Margin for Contrastively-trained Video Retrieval Models Type Conference Article
  Year 2022 Publication ICMR '22: Proceedings of the 2022 International Conference on Multimedia Retrieval Abbreviated Journal  
  Volume Issue Pages 146-157  
  Keywords  
  Abstract Video retrieval using natural language queries has attracted increasing interest due to its relevance in real-world applications, from intelligent access in private media galleries to web-scale video search. Learning the cross-similarity of video and text in a joint embedding space is the dominant approach. To do so, a contrastive loss is usually employed because it organizes the embedding space by putting similar items close and dissimilar items far. This framework leads to competitive recall rates, as they solely focus on the rank of the groundtruth items. Yet, assessing the quality of the ranking list is of utmost importance when considering intelligent retrieval systems, since multiple items may share similar semantics, hence a high relevance. Moreover, the aforementioned framework uses a fixed margin to separate similar and dissimilar items, treating all non-groundtruth items as equally irrelevant. In this paper we propose to use a variable margin: we argue that varying the margin used during training based on how much relevant an item is to a given query, i.e. a relevance-based margin, easily improves the quality of the ranking lists measured through nDCG and mAP. We demonstrate the advantages of our technique using different models on EPIC-Kitchens-100 and YouCook2. We show that even if we carefully tuned the fixed margin, our technique (which does not have the margin as a hyper-parameter) would still achieve better performance. Finally, extensive ablation studies and qualitative analysis support the robustness of our approach. Code will be released at \urlhttps://github.com/aranciokov/RelevanceMargin-ICMR22.  
  Address Newwark, NJ, USA, 27 June 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICMR  
  Notes HuPBA; no menciona Approved no  
  Call Number Admin @ si @ FSS2022 Serial 3808  
Permanent link to this record
 

 
Author Danna Xue; Fei Yang; Pei Wang; Luis Herranz; Jinqiu Sun; Yu Zhu; Yanning Zhang edit   pdf
doi  isbn
openurl 
  Title SlimSeg: Slimmable Semantic Segmentation with Boundary Supervision Type Conference Article
  Year 2022 Publication 30th ACM International Conference on Multimedia Abbreviated Journal  
  Volume Issue Pages 6539-6548  
  Keywords  
  Abstract Accurate semantic segmentation models typically require significant computational resources, inhibiting their use in practical applications. Recent works rely on well-crafted lightweight models to achieve fast inference. However, these models cannot flexibly adapt to varying accuracy and efficiency requirements. In this paper, we propose a simple but effective slimmable semantic segmentation (SlimSeg) method, which can be executed at different capacities during inference depending on the desired accuracy-efficiency tradeoff. More specifically, we employ parametrized channel slimming by stepwise downward knowledge distillation during training. Motivated by the observation that the differences between segmentation results of each submodel are mainly near the semantic borders, we introduce an additional boundary guided semantic segmentation loss to further improve the performance of each submodel. We show that our proposed SlimSeg with various mainstream networks can produce flexible models that provide dynamic adjustment of computational cost and better performance than independent models. Extensive experiments on semantic segmentation benchmarks, Cityscapes and CamVid, demonstrate the generalization ability of our framework.  
  Address Lisboa, Portugal, October 2022  
  Corporate Author Thesis  
  Publisher Association for Computing Machinery Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-4503-9203-7 Medium  
  Area Expedition Conference MM  
  Notes MACO; 600.161; 601.400 Approved no  
  Call Number Admin @ si @ XYW2022 Serial 3758  
Permanent link to this record
 

 
Author Marc Masana; Xialei Liu; Bartlomiej Twardowski; Mikel Menta; Andrew Bagdanov; Joost Van de Weijer edit   pdf
doi  openurl
  Title Class-incremental learning: survey and performance evaluation Type Journal Article
  Year 2022 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume Issue Pages  
  Keywords  
  Abstract For future learning systems incremental learning is desirable, because it allows for: efficient resource usage by eliminating the need to retrain from scratch at the arrival of new data; reduced memory usage by preventing or limiting the amount of data required to be stored -- also important when privacy limitations are imposed; and learning that more closely resembles human learning. The main challenge for incremental learning is catastrophic forgetting, which refers to the precipitous drop in performance on previously learned tasks after learning a new one. Incremental learning of deep neural networks has seen explosive growth in recent years. Initial work focused on task incremental learning, where a task-ID is provided at inference time. Recently we have seen a shift towards class-incremental learning where the learner must classify at inference time between all classes seen in previous tasks without recourse to a task-ID. In this paper, we provide a complete survey of existing methods for incremental learning, and in particular we perform an extensive experimental evaluation on twelve class-incremental methods. We consider several new experimental scenarios, including a comparison of class-incremental methods on multiple large-scale datasets, investigation into small and large domain shifts, and comparison on various network architectures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.120 Approved no  
  Call Number Admin @ si @ MLT2022 Serial 3538  
Permanent link to this record
 

 
Author Lu Yu; Xialei Liu; Joost Van de Weijer edit   pdf
doi  openurl
  Title Self-Training for Class-Incremental Semantic Segmentation Type Journal Article
  Year 2022 Publication IEEE Transactions on Neural Networks and Learning Systems Abbreviated Journal TNNLS  
  Volume Issue Pages  
  Keywords Class-incremental learning; Self-training; Semantic segmentation.  
  Abstract In class-incremental semantic segmentation, we have no access to the labeled data of previous tasks. Therefore, when incrementally learning new classes, deep neural networks suffer from catastrophic forgetting of previously learned knowledge. To address this problem, we propose to apply a self-training approach that leverages unlabeled data, which is used for rehearsal of previous knowledge. Specifically, we first learn a temporary model for the current task, and then, pseudo labels for the unlabeled data are computed by fusing information from the old model of the previous task and the current temporary model. In addition, conflict reduction is proposed to resolve the conflicts of pseudo labels generated from both the old and temporary models. We show that maximizing self-entropy can further improve results by smoothing the overconfident predictions. Interestingly, in the experiments, we show that the auxiliary data can be different from the training data and that even general-purpose, but diverse auxiliary data can lead to large performance gains. The experiments demonstrate the state-of-the-art results: obtaining a relative gain of up to 114% on Pascal-VOC 2012 and 8.5% on the more challenging ADE20K compared to previous state-of-the-art methods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.147; 611.008; Approved no  
  Call Number Admin @ si @ YLW2022 Serial 3745  
Permanent link to this record
 

 
Author Saad Minhas; Aura Hernandez-Sabate; Shoaib Ehsan; Klaus McDonald Maier edit  doi
openurl 
  Title Effects of Non-Driving Related Tasks during Self-Driving mode Type Journal Article
  Year 2022 Publication IEEE Transactions on Intelligent Transportation Systems Abbreviated Journal TITS  
  Volume 23 Issue 2 Pages 1391-1399  
  Keywords  
  Abstract Perception reaction time and mental workload have proven to be crucial in manual driving. Moreover, in highly automated cars, where most of the research is focusing on Level 4 Autonomous driving, take-over performance is also a key factor when taking road safety into account. This study aims to investigate how the immersion in non-driving related tasks affects the take-over performance of drivers in given scenarios. The paper also highlights the use of virtual simulators to gather efficient data that can be crucial in easing the transition between manual and autonomous driving scenarios. The use of Computer Aided Simulations is of absolute importance in this day and age since the automotive industry is rapidly moving towards Autonomous technology. An experiment comprising of 40 subjects was performed to examine the reaction times of driver and the influence of other variables in the success of take-over performance in highly automated driving under different circumstances within a highway virtual environment. The results reflect the relationship between reaction times under different scenarios that the drivers might face under the circumstances stated above as well as the importance of variables such as velocity in the success on regaining car control after automated driving. The implications of the results acquired are important for understanding the criteria needed for designing Human Machine Interfaces specifically aimed towards automated driving conditions. Understanding the need to keep drivers in the loop during automation, whilst allowing drivers to safely engage in other non-driving related tasks is an important research area which can be aided by the proposed study.  
  Address Feb. 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; 600.139; 600.145 Approved no  
  Call Number Admin @ si @ MHE2022 Serial 3468  
Permanent link to this record
 

 
Author Yasuko Sugito; Javier Vazquez; Trevor Canham; Marcelo Bertalmio edit  doi
openurl 
  Title Image quality evaluation in professional HDR/WCG production questions the need for HDR metrics Type Journal Article
  Year 2022 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP  
  Volume 31 Issue Pages 5163 - 5177  
  Keywords Measurement; Image color analysis; Image coding; Production; Dynamic range; Brightness; Extraterrestrial measurements  
  Abstract In the quality evaluation of high dynamic range and wide color gamut (HDR/WCG) images, a number of works have concluded that native HDR metrics, such as HDR visual difference predictor (HDR-VDP), HDR video quality metric (HDR-VQM), or convolutional neural network (CNN)-based visibility metrics for HDR content, provide the best results. These metrics consider only the luminance component, but several color difference metrics have been specifically developed for, and validated with, HDR/WCG images. In this paper, we perform subjective evaluation experiments in a professional HDR/WCG production setting, under a real use case scenario. The results are quite relevant in that they show, firstly, that the performance of HDR metrics is worse than that of a classic, simple standard dynamic range (SDR) metric applied directly to the HDR content; and secondly, that the chrominance metrics specifically developed for HDR/WCG imaging have poor correlation with observer scores and are also outperformed by an SDR metric. Based on these findings, we show how a very simple framework for creating color HDR metrics, that uses only luminance SDR metrics, transfer functions, and classic color spaces, is able to consistently outperform, by a considerable margin, state-of-the-art HDR metrics on a varied set of HDR content, for both perceptual quantization (PQ) and Hybrid Log-Gamma (HLG) encoding, luminance and chroma distortions, and on different color spaces of common use.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes 600.161; 611.007 Approved no  
  Call Number Admin @ si @ SVG2022 Serial 3683  
Permanent link to this record
 

 
Author Ajian Liu; Chenxu Zhao; Zitong Yu; Jun Wan; Anyang Su; Xing Liu; Zichang Tan; Sergio Escalera; Junliang Xing; Yanyan Liang; Guodong Guo; Zhen Lei; Stan Z. Li; Shenshen Du edit  doi
openurl 
  Title Contrastive Context-Aware Learning for 3D High-Fidelity Mask Face Presentation Attack Detection Type Journal Article
  Year 2022 Publication IEEE Transactions on Information Forensics and Security Abbreviated Journal TIForensicSEC  
  Volume 17 Issue Pages 2497 - 2507  
  Keywords  
  Abstract Face presentation attack detection (PAD) is essential to secure face recognition systems primarily from high-fidelity mask attacks. Most existing 3D mask PAD benchmarks suffer from several drawbacks: 1) a limited number of mask identities, types of sensors, and a total number of videos; 2) low-fidelity quality of facial masks. Basic deep models and remote photoplethysmography (rPPG) methods achieved acceptable performance on these benchmarks but still far from the needs of practical scenarios. To bridge the gap to real-world applications, we introduce a large-scale Hi gh- Fi delity Mask dataset, namely HiFiMask . Specifically, a total amount of 54,600 videos are recorded from 75 subjects with 225 realistic masks by 7 new kinds of sensors. Along with the dataset, we propose a novel C ontrastive C ontext-aware L earning (CCL) framework. CCL is a new training methodology for supervised PAD tasks, which is able to learn by leveraging rich contexts accurately (e.g., subjects, mask material and lighting) among pairs of live faces and high-fidelity mask attacks. Extensive experimental evaluations on HiFiMask and three additional 3D mask datasets demonstrate the effectiveness of our method. The codes and dataset will be released soon.  
  Address  
  Corporate Author Thesis  
  Publisher IEEE Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA Approved no  
  Call Number Admin @ si @ LZY2022 Serial 3778  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: