|   | 
Details
   web
Records
Author Josep M. Gonfaus; Theo Gevers; Arjan Gijsenij; Xavier Roca; Jordi Gonzalez
Title Edge Classification using Photo-Geo metric features Type Conference Article
Year 2012 Publication 21st International Conference on Pattern Recognition Abbreviated Journal
Volume Issue Pages 1497 - 1500
Keywords
Abstract Edges are caused by several imaging cues such as shadow, material and illumination transitions. Classification methods have been proposed which are solely based on photometric information, ignoring geometry to classify the physical nature of edges in images. In this paper, the aim is to present a novel strategy to handle both photometric and geometric information for edge classification. Photometric information is obtained through the use of quasi-invariants while geometric information is derived from the orientation and contrast of edges. Different combination frameworks are compared with a new principled approach that captures both information into the same descriptor. From large scale experiments on different datasets, it is shown that, in addition to photometric information, the geometry of edges is an important visual cue to distinguish between different edge types. It is concluded that by combining both cues the performance improves by more than 7% for shadows and highlights.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-4651 ISBN 978-1-4673-2216-4 Medium
Area Expedition Conference ICPR
Notes ISE Approved no
Call Number Admin @ si @ GGG2012b Serial 2142
Permanent link to this record
 

 
Author Adela Barbulescu; Wenjuan Gong; Jordi Gonzalez; Thomas B. Moeslund; Xavier Roca
Title 3D Human Pose Estimation Using 2D Body Part Detectors Type Conference Article
Year 2012 Publication 21st International Conference on Pattern Recognition Abbreviated Journal
Volume Issue Pages 2484 - 2487
Keywords
Abstract Automatic 3D reconstruction of human poses from monocular images is a challenging and popular topic in the computer vision community, which provides a wide range of applications in multiple areas. Solutions for 3D pose estimation involve various learning approaches, such as support vector machines and Gaussian processes, but many encounter difficulties in cluttered scenarios and require additional input data, such as silhouettes, or controlled camera settings. We present a framework that is capable of estimating the 3D pose of a person from single images or monocular image sequences without requiring background information and which is robust to camera variations. The framework models the non-linearity present in human pose estimation as it benefits from flexible learning approaches, including a highly customizable 2D detector. Results on the HumanEva benchmark show how they perform and influence the quality of the 3D pose estimates.
Address Tsubuka, Japan
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-4651 ISBN 978-1-4673-2216-4 Medium
Area Expedition Conference ICPR
Notes ISE Approved no
Call Number Admin @ si @ BGG2012 Serial 2172
Permanent link to this record
 

 
Author Michael Holte; Bhaskar Chakraborty; Jordi Gonzalez; Thomas B. Moeslund
Title A Local 3D Motion Descriptor for Multi-View Human Action Recognition from 4D Spatio-Temporal Interest Points Type Journal Article
Year 2012 Publication IEEE Journal of Selected Topics in Signal Processing Abbreviated Journal J-STSP
Volume 6 Issue 5 Pages 553-565
Keywords
Abstract In this paper, we address the problem of human action recognition in reconstructed 3-D data acquired by multi-camera systems. We contribute to this field by introducing a novel 3-D action recognition approach based on detection of 4-D (3-D space $+$ time) spatio-temporal interest points (STIPs) and local description of 3-D motion features. STIPs are detected in multi-view images and extended to 4-D using 3-D reconstructions of the actors and pixel-to-vertex correspondences of the multi-camera setup. Local 3-D motion descriptors, histogram of optical 3-D flow (HOF3D), are extracted from estimated 3-D optical flow in the neighborhood of each 4-D STIP and made view-invariant. The local HOF3D descriptors are divided using 3-D spatial pyramids to capture and improve the discrimination between arm- and leg-based actions. Based on these pyramids of HOF3D descriptors we build a bag-of-words (BoW) vocabulary of human actions, which is compressed and classified using agglomerative information bottleneck (AIB) and support vector machines (SVMs), respectively. Experiments on the publicly available i3DPost and IXMAS datasets show promising state-of-the-art results and validate the performance and view-invariance of the approach.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-4553 ISBN Medium
Area Expedition Conference
Notes ISE Approved no
Call Number Admin @ si @ HCG2012 Serial 1994
Permanent link to this record
 

 
Author Arjan Gijsenij; Theo Gevers; Joost Van de Weijer
Title Improving Color Constancy by Photometric Edge Weighting Type Journal Article
Year 2012 Publication IEEE Transaction on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI
Volume 34 Issue 5 Pages 918-929
Keywords
Abstract : Edge-based color constancy methods make use of image derivatives to estimate the illuminant. However, different edge types exist in real-world images such as material, shadow and highlight edges. These different edge types may have a distinctive influence on the performance of the illuminant estimation. Therefore, in this paper, an extensive analysis is provided of different edge types on the performance of edge-based color constancy methods. First, an edge-based taxonomy is presented classifying edge types based on their photometric properties (e.g. material, shadow-geometry and highlights). Then, a performance evaluation of edge-based color constancy is provided using these different edge types. From this performance evaluation it is derived that specular and shadow edge types are more valuable than material edges for the estimation of the illuminant. To this end, the (iterative) weighted Grey-Edge algorithm is proposed in which these edge types are more emphasized for the estimation of the illuminant. Images that are recorded under controlled circumstances demonstrate that the proposed iterative weighted Grey-Edge algorithm based on highlights reduces the median angular error with approximately $25\%$. In an uncontrolled environment, improvements in angular error up to $11\%$ are obtained with respect to regular edge-based color constancy.
Address Los Alamitos; CA; USA;
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0162-8828 ISBN Medium
Area Expedition Conference
Notes CIC;ISE Approved no
Call Number Admin @ si @ GGW2012 Serial 1850
Permanent link to this record
 

 
Author Fahad Shahbaz Khan; Muhammad Anwer Rao; Joost Van de Weijer; Andrew Bagdanov; Maria Vanrell; Antonio Lopez
Title Color Attributes for Object Detection Type Conference Article
Year 2012 Publication 25th IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal
Volume Issue Pages 3306-3313
Keywords pedestrian detection
Abstract State-of-the-art object detectors typically use shape information as a low level feature representation to capture the local structure of an object. This paper shows that early fusion of shape and color, as is popular in image classification,
leads to a significant drop in performance for object detection. Moreover, such approaches also yields suboptimal results for object categories with varying importance of color and shape.
In this paper we propose the use of color attributes as an explicit color representation for object detection. Color attributes are compact, computationally efficient, and when combined with traditional shape features provide state-ofthe-
art results for object detection. Our method is tested on the PASCAL VOC 2007 and 2009 datasets and results clearly show that our method improves over state-of-the-art techniques despite its simplicity. We also introduce a new dataset consisting of cartoon character images in which color plays a pivotal role. On this dataset, our approach yields a significant gain of 14% in mean AP over conventional state-of-the-art methods.
Address Providence; Rhode Island; USA;
Corporate Author Thesis
Publisher IEEE Xplore Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1063-6919 ISBN 978-1-4673-1226-4 Medium
Area Expedition Conference CVPR
Notes ADAS; CIC; Approved no
Call Number Admin @ si @ KRW2012 Serial 1935
Permanent link to this record
 

 
Author Marc Serra; Olivier Penacchio; Robert Benavente; Maria Vanrell
Title Names and Shades of Color for Intrinsic Image Estimation Type Conference Article
Year 2012 Publication 25th IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal
Volume Issue Pages 278-285
Keywords
Abstract In the last years, intrinsic image decomposition has gained attention. Most of the state-of-the-art methods are based on the assumption that reflectance changes come along with strong image edges. Recently, user intervention in the recovery problem has proved to be a remarkable source of improvement. In this paper, we propose a novel approach that aims to overcome the shortcomings of pure edge-based methods by introducing strong surface descriptors, such as the color-name descriptor which introduces high-level considerations resembling top-down intervention. We also use a second surface descriptor, termed color-shade, which allows us to include physical considerations derived from the image formation model capturing gradual color surface variations. Both color cues are combined by means of a Markov Random Field. The method is quantitatively tested on the MIT ground truth dataset using different error metrics, achieving state-of-the-art performance.
Address Providence, Rhode Island
Corporate Author Thesis
Publisher IEEE Xplore Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1063-6919 ISBN 978-1-4673-1226-4 Medium
Area Expedition Conference CVPR
Notes CIC Approved no
Call Number Admin @ si @ SPB2012 Serial 2026
Permanent link to this record
 

 
Author Javier Vazquez; Maria Vanrell; Ramon Baldrich; Francesc Tous
Title Color Constancy by Category Correlation Type Journal Article
Year 2012 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP
Volume 21 Issue 4 Pages 1997-2007
Keywords
Abstract Finding color representations which are stable to illuminant changes is still an open problem in computer vision. Until now most approaches have been based on physical constraints or statistical assumptions derived from the scene, while very little attention has been paid to the effects that selected illuminants have
on the final color image representation. The novelty of this work is to propose
perceptual constraints that are computed on the corrected images. We define the
category hypothesis, which weights the set of feasible illuminants according to their ability to map the corrected image onto specific colors. Here we choose these colors as the universal color categories related to basic linguistic terms which have been psychophysically measured. These color categories encode natural color statistics, and their relevance across different cultures is indicated by the fact that they have received a common color name. From this category hypothesis we propose a fast implementation that allows the sampling of a large set of illuminants. Experiments prove that our method rivals current state-of-art performance without the need for training algorithmic parameters. Additionally, the method can be used as a framework to insert top-down information from other sources, thus opening further research directions in solving for color constancy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1057-7149 ISBN Medium
Area Expedition Conference
Notes CIC Approved no
Call Number Admin @ si @ VVB2012 Serial 1999
Permanent link to this record
 

 
Author Jose Carlos Rubio; Joan Serrat; Antonio Lopez; Daniel Ponsa
Title Multiple target tracking for intelligent headlights control Type Journal Article
Year 2012 Publication IEEE Transactions on Intelligent Transportation Systems Abbreviated Journal TITS
Volume 13 Issue 2 Pages 594-605
Keywords Intelligent Headlights
Abstract Intelligent vehicle lighting systems aim at automatically regulating the headlights' beam to illuminate as much of the road ahead as possible while avoiding dazzling other drivers. A key component of such a system is computer vision software that is able to distinguish blobs due to vehicles' headlights and rear lights from those due to road lamps and reflective elements such as poles and traffic signs. In a previous work, we have devised a set of specialized supervised classifiers to make such decisions based on blob features related to its intensity and shape. Despite the overall good performance, there remain challenging that have yet to be solved: notably, faint and tiny blobs corresponding to quite distant vehicles. In fact, for such distant blobs, classification decisions can be taken after observing them during a few frames. Hence, incorporating tracking could improve the overall lighting system performance by enforcing the temporal consistency of the classifier decision. Accordingly, this paper focuses on the problem of constructing blob tracks, which is actually one of multiple-target tracking (MTT), but under two special conditions: We have to deal with frequent occlusions, as well as blob splits and merges. We approach it in a novel way by formulating the problem as a maximum a posteriori inference on a Markov random field. The qualitative (in video form) and quantitative evaluation of our new MTT method shows good tracking results. In addition, we will also see that the classification performance of the problematic blobs improves due to the proposed MTT algorithm.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1524-9050 ISBN Medium
Area Expedition Conference
Notes ADAS Approved no
Call Number Admin @ si @ RLP2012; ADAS @ adas @ rsl2012g Serial 1877
Permanent link to this record
 

 
Author Albert Andaluz
Title Harmonic Phase Flow: User's guide Type Manual
Year 2012 Publication CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract HPF is a plugin for the computation of clinical scores under Osirix.
This manual provides a basic guide for experienced clinical staff. Chapter 1 provides the theoretical background in which this plugin is based.
Next, in chapter 2 we provide basic instructions for installing and uninstalling this plugin. chapter 3we shows a step-by-step scenario to compute clinical scores from tagged-MRI images with HPF. Finally, in chapter 4 we provide a quick guide for plugin developers
Address Bellaterra, Barcelona (Spain)
Corporate Author Computer Vision Center Thesis
Publisher CVC Place of Publication Barcelona Editor
Language english Summary Language english Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes IAM Approved no
Call Number IAM @ iam @ And2012 Serial 1863
Permanent link to this record
 

 
Author Sergio Vera; Debora Gil; Antonio Lopez; Miguel Angel Gonzalez Ballester
Title Multilocal Creaseness Measure Type Journal
Year 2012 Publication The Insight Journal Abbreviated Journal IJ
Volume Issue Pages
Keywords Ridges, Valley, Creaseness, Structure Tensor, Skeleton,
Abstract This document describes the implementation using the Insight Toolkit of an algorithm for detecting creases (ridges and valleys) in N-dimensional images, based on the Local Structure Tensor of the image. In addition to the filter used to calculate the creaseness image, a filter for the computation of the structure tensor is also included in this submission.
Address
Corporate Author Alma IT Systems Thesis
Publisher Place of Publication Editor
Language english Summary Language english Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes IAM;ADAS; Approved no
Call Number IAM @ iam @ VGL2012 Serial 1840
Permanent link to this record
 

 
Author Ferran Diego; G.D. Evangelidis; Joan Serrat
Title Night-time outdoor surveillance by mobile cameras Type Conference Article
Year 2012 Publication 1st International Conference on Pattern Recognition Applications and Methods Abbreviated Journal
Volume 2 Issue Pages 365-371
Keywords
Abstract This paper addresses the problem of video surveillance by mobile cameras. We present a method that allows online change detection in night-time outdoor surveillance. Because of the camera movement, background frames are not available and must be “localized” in former sequences and registered with the current frames. To this end, we propose a Frame Localization And Registration (FLAR) approach that solves the problem efficiently. Frames of former sequences define a database which is queried by current frames in turn. To quickly retrieve nearest neighbors, database is indexed through a visual dictionary method based on the SURF descriptor. Furthermore, the frame localization is benefited by a temporal filter that exploits the temporal coherence of videos. Next, the recently proposed ECC alignment scheme is used to spatially register the synchronized frames. Finally, change detection methods apply to aligned frames in order to mark suspicious areas. Experiments with real night sequences recorded by in-vehicle cameras demonstrate the performance of the proposed method and verify its efficiency and effectiveness against other methods.
Address Algarve, Portugal
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICPRAM
Notes ADAS Approved no
Call Number Admin @ si @ DES2012 Serial 2035
Permanent link to this record
 

 
Author Thanh Ha Do; Salvatore Tabbone; Oriol Ramos Terrades
Title Text/graphic separation using a sparse representation with multi-learned dictionaries Type Conference Article
Year 2012 Publication 21st International Conference on Pattern Recognition Abbreviated Journal
Volume Issue Pages
Keywords Graphics Recognition; Layout Analysis; Document Understandin
Abstract In this paper, we propose a new approach to extract text regions from graphical documents. In our method, we first empirically construct two sequences of learned dictionaries for the text and graphical parts respectively. Then, we compute the sparse representations of all different sizes and non-overlapped document patches in these learned dictionaries. Based on these representations, each patch can be classified into the text or graphic category by comparing its reconstruction errors. Same-sized patches in one category are then merged together to define the corresponding text or graphic layers which are combined to createfinal text/graphic layer. Finally, in a post-processing step, text regions are further filtered out by using some learned thresholds.
Address Tsukuba
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICPR
Notes DAG Approved no
Call Number Admin @ si @ DTR2012a Serial 2135
Permanent link to this record
 

 
Author Jon Almazan; Albert Gordo; Alicia Fornes; Ernest Valveny
Title Efficient Exemplar Word Spotting Type Conference Article
Year 2012 Publication 23rd British Machine Vision Conference Abbreviated Journal
Volume Issue Pages 67.1- 67.11
Keywords
Abstract In this paper we propose an unsupervised segmentation-free method for word spotting in document images.
Documents are represented with a grid of HOG descriptors, and a sliding window approach is used to locate the document regions that are most similar to the query. We use the exemplar SVM framework to produce a better representation of the query in an unsupervised way. Finally, the document descriptors are precomputed and compressed with Product Quantization. This offers two advantages: first, a large number of documents can be kept in RAM memory at the same time. Second, the sliding window becomes significantly faster since distances between quantized HOG descriptors can be precomputed. Our results significantly outperform other segmentation-free methods in the literature, both in accuracy and in speed and memory usage.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 1-901725-46-4 Medium
Area Expedition Conference BMVC
Notes DAG Approved no
Call Number DAG @ dag @ AGF2012 Serial 1984
Permanent link to this record
 

 
Author Sophie Wuerger; Kaida Xiao; Dimitris Mylonas; Q. Huang; Dimosthenis Karatzas; Galina Paramei
Title Blue green color categorization in mandarin english speakers Type Journal Article
Year 2012 Publication Journal of the Optical Society of America A Abbreviated Journal JOSA A
Volume 29 Issue 2 Pages A102-A1207
Keywords
Abstract Observers are faster to detect a target among a set of distracters if the targets and distracters come from different color categories. This cross-boundary advantage seems to be limited to the right visual field, which is consistent with the dominance of the left hemisphere for language processing [Gilbert et al., Proc. Natl. Acad. Sci. USA 103, 489 (2006)]. Here we study whether a similar visual field advantage is found in the color identification task in speakers of Mandarin, a language that uses a logographic system. Forty late Mandarin-English bilinguals performed a blue-green color categorization task, in a blocked design, in their first language (L1: Mandarin) or second language (L2: English). Eleven color singletons ranging from blue to green were presented for 160 ms, randomly in the left visual field (LVF) or right visual field (RVF). Color boundary and reaction times (RTs) at the color boundary were estimated in L1 and L2, for both visual fields. We found that the color boundary did not differ between the languages; RTs at the color boundary, however, were on average more than 100 ms shorter in the English compared to the Mandarin sessions, but only when the stimuli were presented in the RVF. The finding may be explained by the script nature of the two languages: Mandarin logographic characters are analyzed visuospatially in the right hemisphere, which conceivably facilitates identification of color presented to the LVF.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes DAG Approved no
Call Number Admin @ si @ WXM2012 Serial 2007
Permanent link to this record
 

 
Author Jorge Bernal; F. Javier Sanchez; Fernando Vilariño
Title Towards Automatic Polyp Detection with a Polyp Appearance Model Type Journal Article
Year 2012 Publication Pattern Recognition Abbreviated Journal PR
Volume 45 Issue 9 Pages 3166-3182
Keywords Colonoscopy,PolypDetection,RegionSegmentation,SA-DOVA descriptot
Abstract This work aims at the automatic polyp detection by using a model of polyp appearance in the context of the analysis of colonoscopy videos. Our method consists of three stages: region segmentation, region description and region classification. The performance of our region segmentation method guarantees that if a polyp is present in the image, it will be exclusively and totally contained in a single region. The output of the algorithm also defines which regions can be considered as non-informative. We define as our region descriptor the novel Sector Accumulation-Depth of Valleys Accumulation (SA-DOVA), which provides a necessary but not sufficient condition for the polyp presence. Finally, we classify our segmented regions according to the maximal values of the SA-DOVA descriptor. Our preliminary classification results are promising, especially when classifying those parts of the image that do not contain a polyp inside.
Address
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-3203 ISBN Medium
Area 800 Expedition Conference IbPRIA
Notes MV;SIAI Approved no
Call Number Admin @ si @ BSV2012; IAM @ iam Serial 1997
Permanent link to this record