|   | 
Details
   web
Records
Author Lluis Gomez; Y. Patel; Marçal Rusiñol; C.V. Jawahar; Dimosthenis Karatzas
Title Self‐supervised learning of visual features through embedding images into text topic spaces Type Conference Article
Year 2017 Publication 30th IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal
Volume Issue Pages
Keywords
Abstract End-to-end training from scratch of current deep architectures for new computer vision problems would require Imagenet-scale datasets, and this is not always possible. In this paper we present a method that is able to take advantage of freely available multi-modal content to train computer vision algorithms without human supervision. We put forward the idea of performing self-supervised learning of visual features by mining a large scale corpus of multi-modal (text and image) documents. We show that discriminative visual features can be learnt efficiently by training a CNN to predict the semantic context in which a particular image is more probable to appear as an illustration. For this we leverage the hidden semantic structures discovered in the text corpus with a well-known topic modeling technique. Our experiments demonstrate state of the art performance in image classification, object detection, and multi-modal retrieval compared to recent self-supervised or natural-supervised approaches.
Address Honolulu; Hawaii; July 2017
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPR
Notes DAG; 600.084; 600.121 Approved no
Call Number Admin @ si @ GPR2017 Serial 2889
Permanent link to this record
 

 
Author Sounak Dey; Anjan Dutta; Juan Ignacio Toledo; Suman Ghosh; Josep Llados; Umapada Pal
Title SigNet: Convolutional Siamese Network for Writer Independent Offline Signature Verification Type Miscellaneous
Year 2018 Publication Arxiv Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Offline signature verification is one of the most challenging tasks in biometrics and document forensics. Unlike other verification problems, it needs to model minute but critical details between genuine and forged signatures, because a skilled falsification might often resembles the real signature with small deformation. This verification task is even harder in writer independent scenarios which is undeniably fiscal for realistic cases. In this paper, we model an offline writer independent signature verification task with a convolutional Siamese network. Siamese networks are twin networks with shared weights, which can be trained to learn a feature space where similar observations are placed in proximity. This is achieved by exposing the network to a pair of similar and dissimilar observations and minimizing the Euclidean distance between similar pairs while simultaneously maximizing it between dissimilar pairs. Experiments conducted on cross-domain datasets emphasize the capability of our network to model forgery in different languages (scripts) and handwriting styles. Moreover, our designed Siamese network, named SigNet, exceeds the state-of-the-art results on most of the benchmark signature datasets, which paves the way for further research in this direction.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes DAG; 600.097; 600.121 Approved no
Call Number Admin @ si @ DDT2018 Serial 3085
Permanent link to this record
 

 
Author Hugo Jair Escalante; Heysem Kaya; Albert Ali Salah; Sergio Escalera; Yagmur Gucluturk; Umut Guclu; Xavier Baro; Isabelle Guyon; Julio C. S. Jacques Junior; Meysam Madadi; Stephane Ayache; Evelyne Viegas; Furkan Gurpinar; Achmadnoer Sukma Wicaksana; Cynthia C. S. Liem; Marcel A. J. van Gerven; Rob van Lier
Title Explaining First Impressions: Modeling, Recognizing, and Explaining Apparent Personality from Videos Type Miscellaneous
Year 2018 Publication Arxiv Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Explainability and interpretability are two critical aspects of decision support systems. Within computer vision, they are critical in certain tasks related to human behavior analysis such as in health care applications. Despite their importance, it is only recently that researchers are starting to explore these aspects. This paper provides an introduction to explainability and interpretability in the context of computer vision with an emphasis on looking at people tasks. Specifically, we review and study those mechanisms in the context of first impressions analysis. To the best of our knowledge, this is the first effort in this direction. Additionally, we describe a challenge we organized on explainability in first impressions analysis from video. We analyze in detail the newly introduced data set, the evaluation protocol, and summarize the results of the challenge. Finally, derived from our study, we outline research opportunities that we foresee will be decisive in the near future for the development of the explainable computer vision field.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HUPBA Approved no
Call Number Admin @ si @ JKS2018 Serial 3095
Permanent link to this record
 

 
Author Boris N. Oreshkin; Pau Rodriguez; Alexandre Lacoste
Title TADAM: Task dependent adaptive metric for improved few-shot learning Type Conference Article
Year 2018 Publication 32nd Annual Conference on Neural Information Processing Systems Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Few-shot learning has become essential for producing models that generalize from few examples. In this work, we identify that metric scaling and metric task conditioning are important to improve the performance of few-shot algorithms. Our analysis reveals that simple metric scaling completely changes the nature of few-shot algorithm parameter updates. Metric scaling provides improvements up to 14% in accuracy for certain metrics on the mini-Imagenet 5-way 5-shot classification task. We further propose a simple and effective way of conditioning a learner on the task sample set, resulting in learning a task-dependent metric space. Moreover, we propose and empirically test a practical end-to-end optimization procedure based on auxiliary task co-training to learn a task-dependent metric space. The resulting few-shot learning model based on the task-dependent scaled metric achieves state of the art on mini-Imagenet. We confirm these results on another few-shot dataset that we introduce in this paper based on CIFAR100.
Address Montreal; Canada; December 2018
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference NIPS
Notes ISE; 600.098; 600.119 Approved no
Call Number Admin @ si @ ORL2018 Serial 3140
Permanent link to this record
 

 
Author Estefania Talavera; Nicolai Petkov; Petia Radeva
Title Towards Unsupervised Familiar Scene Recognition in Egocentric Videos Type Miscellaneous
Year 2019 Publication Arxiv Abbreviated Journal
Volume Issue Pages
Keywords
Abstract CoRR abs/1905.04093
Nowadays, there is an upsurge of interest in using lifelogging devices. Such devices generate huge amounts of image data; consequently, the need for automatic methods for analyzing and summarizing these data is drastically increasing. We present a new method for familiar scene recognition in egocentric videos, based on background pattern detection through automatically configurable COSFIRE filters. We present some experiments over egocentric data acquired with the Narrative Clip.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MILAB; no menciona Approved no
Call Number Admin @ si @ TPR2019b Serial 3379
Permanent link to this record
 

 
Author Estefania Talavera; Petia Radeva; Nicolai Petkov
Title Towards Emotion Retrieval in Egocentric PhotoStream Type Miscellaneous
Year 2019 Publication Arxiv Abbreviated Journal
Volume Issue Pages
Keywords
Abstract CoRR abs/1905.04107
The availability and use of egocentric data are rapidly increasing due to the growing use of wearable cameras. Our aim is to study the effect (positive, neutral or negative) of egocentric images or events on an observer. Given egocentric photostreams capturing the wearer's days, we propose a method that aims to assign sentiment to events extracted from egocentric photostreams. Such moments can be candidates to retrieve according to their possibility of representing a positive experience for the camera's wearer. The proposed approach obtained a classification accuracy of 75% on the test set, with a deviation of 8%. Our model makes a step forward opening the door to sentiment recognition in egocentric photostreams.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MILAB; no proj Approved no
Call Number Admin @ si @ TRP2019 Serial 3381
Permanent link to this record
 

 
Author Alejandro Cartas; Jordi Luque; Petia Radeva; Carlos Segura; Mariella Dimiccoli
Title How Much Does Audio Matter to Recognize Egocentric Object Interactions? Type Miscellaneous
Year 2019 Publication Arxiv Abbreviated Journal
Volume Issue Pages
Keywords
Abstract CoRR abs/1906.00634
Sounds are an important source of information on our daily interactions with objects. For instance, a significant amount of people can discern the temperature of water that it is being poured just by using the sense of hearing. However, only a few works have explored the use of audio for the classification of object interactions in conjunction with vision or as single modality. In this preliminary work, we propose an audio model for egocentric action recognition and explore its usefulness on the parts of the problem (noun, verb, and action classification). Our model achieves a competitive result in terms of verb classification (34.26% accuracy) on a standard benchmark with respect to vision-based state of the art systems, using a comparatively lighter architecture.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MILAB; no menciona Approved no
Call Number Admin @ si @ CLR2019 Serial 3383
Permanent link to this record
 

 
Author Md. Mostafa Kamal Sarker; Hatem A. Rashwan; Mohamed Abdel-Nasser; Vivek Kumar Singh; Syeda Furruka Banu; Farhan Akram; Forhad U. H. Chowdhury; Kabir Ahmed Choudhury; Sylvie Chambon; Petia Radeva; Domenec Puig
Title MobileGAN: Skin Lesion Segmentation Using a Lightweight Generative Adversarial Network Type Miscellaneous
Year 2019 Publication Arxiv Abbreviated Journal
Volume Issue Pages
Keywords
Abstract CoRR abs/1907.00856
Skin lesion segmentation in dermoscopic images is a challenge due to their blurry and irregular boundaries. Most of the segmentation approaches based on deep learning are time and memory consuming due to the hundreds of millions of parameters. Consequently, it is difficult to apply them to real dermatoscope devices with limited GPU and memory resources. In this paper, we propose a lightweight and efficient Generative Adversarial Networks (GAN) model, called MobileGAN for skin lesion segmentation. More precisely, the MobileGAN combines 1D non-bottleneck factorization networks with position and channel attention modules in a GAN model. The proposed model is evaluated on the test dataset of the ISBI 2017 challenges and the validation dataset of ISIC 2018 challenges. Although the proposed network has only 2.35 millions of parameters, it is still comparable with the state-of-the-art. The experimental results show that our MobileGAN obtains comparable performance with an accuracy of 97.61%.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MILAB; no menciona Approved no
Call Number Admin @ si @ MRA2019 Serial 3384
Permanent link to this record
 

 
Author Vacit Oguz Yazici; Abel Gonzalez-Garcia; Arnau Ramisa; Bartlomiej Twardowski; Joost Van de Weijer
Title Orderless Recurrent Models for Multi-label Classification Type Conference Article
Year 2020 Publication 33rd IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Recurrent neural networks (RNN) are popular for many computer vision tasks, including multi-label classification. Since RNNs produce sequential outputs, labels need to be ordered for the multi-label classification task. Current approaches sort labels according to their frequency, typically ordering them in either rare-first or frequent-first. These imposed orderings do not take into account that the natural order to generate the labels can change for each image, e.g.\ first the dominant object before summing up the smaller objects in the image. Therefore, in this paper, we propose ways to dynamically order the ground truth labels with the predicted label sequence. This allows for the faster training of more optimal LSTM models for multi-label classification. Analysis evidences that our method does not suffer from duplicate generation, something which is common for other models. Furthermore, it outperforms other CNN-RNN models, and we show that a standard architecture of an image encoder and language decoder trained with our proposed loss obtains the state-of-the-art results on the challenging MS-COCO, WIDER Attribute and PA-100K and competitive results on NUS-WIDE.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPR
Notes LAMP; 600.109; 601.309; 600.141; 600.120 Approved no
Call Number Admin @ si @ YGR2020 Serial 3408
Permanent link to this record
 

 
Author Oriol Ramos Terrades; Albert Berenguel; Debora Gil
Title A flexible outlier detector based on a topology given by graph communities Type Miscellaneous
Year 2020 Publication Arxiv Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Outlier, or anomaly, detection is essential for optimal performance of machine learning methods and statistical predictive models. It is not just a technical step in a data cleaning process but a key topic in many fields such as fraudulent document detection, in medical applications and assisted diagnosis systems or detecting security threats. In contrast to population-based methods, neighborhood based local approaches are simple flexible methods that have the potential to perform well in small sample size unbalanced problems. However, a main concern of local approaches is the impact that the computation of each sample neighborhood has on the method performance. Most approaches use a distance in the feature space to define a single neighborhood that requires careful selection of several parameters. This work presents a local approach based on a local measure of the heterogeneity of sample labels in the feature space considered as a topological manifold. Topology is computed using the communities of a weighted graph codifying mutual nearest neighbors in the feature space. This way, we provide with a set of multiple neighborhoods able to describe the structure of complex spaces without parameter fine tuning. The extensive experiments on real-world data sets show that our approach overall outperforms, both, local and global strategies in multi and single view settings.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes IAM; DAG; 600.139; 600.145; 600.140; 600.121 Approved no
Call Number Admin @ si @ RBG2020 Serial 3475
Permanent link to this record
 

 
Author Lei Kang; Pau Riba; Marçal Rusiñol; Alicia Fornes; Mauricio Villegas
Title Pay Attention to What You Read: Non-recurrent Handwritten Text-Line Recognition Type Journal Article
Year 2022 Publication Pattern Recognition Abbreviated Journal PR
Volume 129 Issue Pages 108766
Keywords
Abstract The advent of recurrent neural networks for handwriting recognition marked an important milestone reaching impressive recognition accuracies despite the great variability that we observe across different writing styles. Sequential architectures are a perfect fit to model text lines, not only because of the inherent temporal aspect of text, but also to learn probability distributions over sequences of characters and words. However, using such recurrent paradigms comes at a cost at training stage, since their sequential pipelines prevent parallelization. In this work, we introduce a non-recurrent approach to recognize handwritten text by the use of transformer models. We propose a novel method that bypasses any recurrence. By using multi-head self-attention layers both at the visual and textual stages, we are able to tackle character recognition as well as to learn language-related dependencies of the character sequences to be decoded. Our model is unconstrained to any predefined vocabulary, being able to recognize out-of-vocabulary words, i.e. words that do not appear in the training vocabulary. We significantly advance over prior art and demonstrate that satisfactory recognition accuracies are yielded even in few-shot learning scenarios.
Address Sept. 2022
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes DAG; 600.121; 600.162 Approved no
Call Number Admin @ si @ KRR2022 Serial 3556
Permanent link to this record
 

 
Author Debora Gil; Katerine Diaz; Carles Sanchez; Aura Hernandez-Sabate
Title Early Screening of SARS-CoV-2 by Intelligent Analysis of X-Ray Images Type Miscellaneous
Year 2020 Publication Arxiv Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Future SARS-CoV-2 virus outbreak COVID-XX might possibly occur during the next years. However the pathology in humans is so recent that many clinical aspects, like early detection of complications, side effects after recovery or early screening, are currently unknown. In spite of the number of cases of COVID-19, its rapid spread putting many sanitary systems in the edge of collapse has hindered proper collection and analysis of the data related to COVID-19 clinical aspects. We describe an interdisciplinary initiative that integrates clinical research, with image diagnostics and the use of new technologies such as artificial intelligence and radiomics with the aim of clarifying some of SARS-CoV-2 open questions. The whole initiative addresses 3 main points: 1) collection of standardize data including images, clinical data and analytics; 2) COVID-19 screening for its early diagnosis at primary care centers; 3) define radiomic signatures of COVID-19 evolution and associated pathologies for the early treatment of complications. In particular, in this paper we present a general overview of the project, the experimental design and first results of X-ray COVID-19 detection using a classic approach based on HoG and feature selection. Our experiments include a comparison to some recent methods for COVID-19 screening in X-Ray and an exploratory analysis of the feasibility of X-Ray COVID-19 screening. Results show that classic approaches can outperform deep-learning methods in this experimental setting, indicate the feasibility of early COVID-19 screening and that non-COVID infiltration is the group of patients most similar to COVID-19 in terms of radiological description of X-ray. Therefore, an efficient COVID-19 screening should be complemented with other clinical data to better discriminate these cases.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes IAM; 600.139; 600.145; 601.337 Approved no
Call Number Admin @ si @ GDS2020 Serial 3474
Permanent link to this record
 

 
Author Pau Riba; Andreas Fischer; Josep Llados; Alicia Fornes
Title Learning Graph Edit Distance by Graph NeuralNetworks Type Miscellaneous
Year 2020 Publication Arxiv Abbreviated Journal
Volume Issue Pages
Keywords
Abstract The emergence of geometric deep learning as a novel framework to deal with graph-based representations has faded away traditional approaches in favor of completely new methodologies. In this paper, we propose a new framework able to combine the advances on deep metric learning with traditional approximations of the graph edit distance. Hence, we propose an efficient graph distance based on the novel field of geometric deep learning. Our method employs a message passing neural network to capture the graph structure, and thus, leveraging this information for its use on a distance computation. The performance of the proposed graph distance is validated on two different scenarios. On the one hand, in a graph retrieval of handwritten words~\ie~keyword spotting, showing its superior performance when compared with (approximate) graph edit distance benchmarks. On the other hand, demonstrating competitive results for graph similarity learning when compared with the current state-of-the-art on a recent benchmark dataset.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes DAG; 600.121; 600.140; 601.302 Approved no
Call Number Admin @ si @ RFL2020 Serial 3555
Permanent link to this record
 

 
Author Minesh Mathew; Ruben Tito; Dimosthenis Karatzas; R.Manmatha; C.V. Jawahar
Title Document Visual Question Answering Challenge 2020 Type Conference Article
Year 2020 Publication 33rd IEEE Conference on Computer Vision and Pattern Recognition – Short paper Abbreviated Journal
Volume Issue Pages
Keywords
Abstract This paper presents results of Document Visual Question Answering Challenge organized as part of “Text and Documents in the Deep Learning Era” workshop, in CVPR 2020. The challenge introduces a new problem – Visual Question Answering on document images. The challenge comprised two tasks. The first task concerns with asking questions on a single document image. On the other hand, the second task is set as a retrieval task where the question is posed over a collection of images. For the task 1 a new dataset is introduced comprising 50,000 questions-answer(s) pairs defined over 12,767 document images. For task 2 another dataset has been created comprising 20 questions over 14,362 document images which share the same document template.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPR
Notes DAG; 600.121 Approved no
Call Number Admin @ si @ MTK2020 Serial 3558
Permanent link to this record
 

 
Author Hannes Mueller; Andre Groger; Jonathan Hersh; Andrea Matranga; Joan Serrat
Title Monitoring War Destruction from Space: A Machine Learning Approach Type Miscellaneous
Year 2020 Publication Arxiv Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Existing data on building destruction in conflict zones rely on eyewitness reports or manual detection, which makes it generally scarce, incomplete and potentially biased. This lack of reliable data imposes severe limitations for media reporting, humanitarian relief efforts, human rights monitoring, reconstruction initiatives, and academic studies of violent conflict. This article introduces an automated method of measuring destruction in high-resolution satellite images using deep learning techniques combined with data augmentation to expand training samples. We apply this method to the Syrian civil war and reconstruct the evolution of damage in major cities across the country. The approach allows generating destruction data with unprecedented scope, resolution, and frequency – only limited by the available satellite imagery – which can alleviate data limitations decisively.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ADAS; 600.118 Approved no
Call Number Admin @ si @ MGH2020 Serial 3489
Permanent link to this record