|   | 
Details
   web
Records
Author J. Stöttinger; A. Hanbury; N. Sebe; Theo Gevers
Title Spars Color Interest Points for Image Retrieval and Object Categorization Type Journal Article
Year 2012 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP
Volume 21 Issue 5 Pages 2681-2692
Keywords
Abstract Impact factor 2010: 2.92
IF 2011/2012?: 3.32
Interest point detection is an important research area in the field of image processing and computer vision. In particular, image retrieval and object categorization heavily rely on interest point detection from which local image descriptors are computed for image matching. In general, interest points are based on luminance, and color has been largely ignored. However, the use of color increases the distinctiveness of interest points. The use of color may therefore provide selective search reducing the total number of interest points used for image matching. This paper proposes color interest points for sparse image representation. To reduce the sensitivity to varying imaging conditions, light-invariant interest points are introduced. Color statistics based on occurrence probability lead to color boosted points, which are obtained through saliency-based feature selection. Furthermore, a principal component analysis-based scale selection method is proposed, which gives a robust scale estimation per interest point. From large-scale experiments, it is shown that the proposed color interest point detector has higher repeatability than a luminance-based one. Furthermore, in the context of image retrieval, a reduced and predictable number of color features show an increase in performance compared to state-of-the-art interest points. Finally, in the context of object recognition, for the Pascal VOC 2007 challenge, our method gives comparable performance to state-of-the-art methods using only a small fraction of the features, reducing the computing time considerably.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1057-7149 ISBN Medium
Area Expedition Conference
Notes ALTRES;ISE Approved no
Call Number Admin @ si @ SHS2012 Serial 1847
Permanent link to this record
 

 
Author Mohammad Rouhani; Angel Sappa
Title Implicit Polynomial Representation through a Fast Fitting Error Estimation Type Journal Article
Year 2012 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP
Volume 21 Issue 4 Pages 2089-2098
Keywords
Abstract Impact Factor
This paper presents a simple distance estimation for implicit polynomial fitting. It is computed as the height of a simplex built between the point and the surface (i.e., a triangle in 2-D or a tetrahedron in 3-D), which is used as a coarse but reliable estimation of the orthogonal distance. The proposed distance can be described as a function of the coefficients of the implicit polynomial. Moreover, it is differentiable and has a smooth behavior . Hence, it can be used in any gradient-based optimization. In this paper, its use in a Levenberg-Marquardt framework is shown, which is particularly devoted for nonlinear least squares problems. The proposed estimation is a generalization of the gradient-based distance estimation, which is widely used in the literature. Experimental results, both in 2-D and 3-D data sets, are provided. Comparisons with state-of-the-art techniques are presented, showing the advantages of the proposed approach.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1057-7149 ISBN Medium
Area Expedition Conference
Notes ADAS Approved no
Call Number Admin @ si @ RoS2012b; ADAS @ adas @ Serial 1937
Permanent link to this record
 

 
Author Arjan Gijsenij; R. Lu; Theo Gevers; De Xu
Title Color Constancy for Multiple Light Source Type Journal Article
Year 2012 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP
Volume 21 Issue 2 Pages 697-707
Keywords
Abstract Impact factor 2010: 2.92
Impact factor 2011/2012?: 3.32
Color constancy algorithms are generally based on the simplifying assumption that the spectral distribution of a light source is uniform across scenes. However, in reality, this assumption is often violated due to the presence of multiple light sources. In this paper, we will address more realistic scenarios where the uniform light-source assumption is too restrictive. First, a methodology is proposed to extend existing algorithms by applying color constancy locally to image patches, rather than globally to the entire image. After local (patch-based) illuminant estimation, these estimates are combined into more robust estimations, and a local correction is applied based on a modified diagonal model. Quantitative and qualitative experiments on spectral and real images show that the proposed methodology reduces the influence of two light sources simultaneously present in one scene. If the chromatic difference between these two illuminants is more than 1° , the proposed framework outperforms algorithms based on the uniform light-source assumption (with error-reduction up to approximately 30%). Otherwise, when the chromatic difference is less than 1° and the scene can be considered to contain one (approximately) uniform light source, the performance of the proposed method framework is similar to global color constancy methods.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1057-7149 ISBN Medium
Area Expedition Conference
Notes ALTRES;ISE Approved no
Call Number Admin @ si @ GLG2012a Serial 1852
Permanent link to this record
 

 
Author Hamdi Dibeklioglu; Albert Ali Salah; Theo Gevers
Title A Statistical Method for 2D Facial Landmarking Type Journal Article
Year 2012 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP
Volume 21 Issue 2 Pages 844-858
Keywords
Abstract IF = 3.32
Many facial-analysis approaches rely on robust and accurate automatic facial landmarking to correctly function. In this paper, we describe a statistical method for automatic facial-landmark localization. Our landmarking relies on a parsimonious mixture model of Gabor wavelet features, computed in coarse-to-fine fashion and complemented with a shape prior. We assess the accuracy and the robustness of the proposed approach in extensive cross-database conditions conducted on four face data sets (Face Recognition Grand Challenge, Cohn-Kanade, Bosphorus, and BioID). Our method has 99.33% accuracy on the Bosphorus database and 97.62% accuracy on the BioID database on the average, which improves the state of the art. We show that the method is not significantly affected by low-resolution images, small rotations, facial expressions, and natural occlusions such as beard and mustache. We further test the goodness of the landmarks in a facial expression recognition application and report landmarking-induced improvement over baseline on two separate databases for video-based expression recognition (Cohn-Kanade and BU-4DFE).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1057-7149 ISBN Medium
Area Expedition Conference
Notes ALTRES;ISE Approved no
Call Number Admin @ si @ DSG 2012 Serial 1853
Permanent link to this record
 

 
Author R. Valenti; Theo Gevers
Title Combining Head Pose and Eye Location Information for Gaze Estimation Type Journal Article
Year 2012 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP
Volume 21 Issue 2 Pages 802-815
Keywords
Abstract Impact factor 2010: 2.92
Impact factor 2011/12?: 3.32
Head pose and eye location for gaze estimation have been separately studied in numerous works in the literature. Previous research shows that satisfactory accuracy in head pose and eye location estimation can be achieved in constrained settings. However, in the presence of nonfrontal faces, eye locators are not adequate to accurately locate the center of the eyes. On the other hand, head pose estimation techniques are able to deal with these conditions; hence, they may be suited to enhance the accuracy of eye localization. Therefore, in this paper, a hybrid scheme is proposed to combine head pose and eye location information to obtain enhanced gaze estimation. To this end, the transformation matrix obtained from the head pose is used to normalize the eye regions, and in turn, the transformation matrix generated by the found eye location is used to correct the pose estimation procedure. The scheme is designed to enhance the accuracy of eye location estimations, particularly in low-resolution videos, to extend the operative range of the eye locators, and to improve the accuracy of the head pose tracker. These enhanced estimations are then combined to obtain a novel visual gaze estimation system, which uses both eye location and head information to refine the gaze estimates. From the experimental results, it can be derived that the proposed unified scheme improves the accuracy of eye estimations by 16% to 23%. Furthermore, it considerably extends its operating range by more than 15° by overcoming the problems introduced by extreme head poses. Moreover, the accuracy of the head pose tracker is improved by 12% to 24%. Finally, the experimentation on the proposed combined gaze estimation system shows that it is accurate (with a mean error between 2° and 5°) and that it can be used in cases where classic approaches would fail without imposing restraints on the position of the head.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1057-7149 ISBN Medium
Area Expedition Conference
Notes ALTRES;ISE Approved no
Call Number Admin @ si @ VaG 2012b Serial 1851
Permanent link to this record
 

 
Author Ariel Amato; Mikhail Mozerov; Andrew Bagdanov; Jordi Gonzalez
Title Accurate Moving Cast Shadow Suppression Based on Local Color Constancy detection Type Journal Article
Year 2011 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP
Volume 20 Issue 10 Pages 2954 - 2966
Keywords
Abstract This paper describes a novel framework for detection and suppression of properly shadowed regions for most possible scenarios occurring in real video sequences. Our approach requires no prior knowledge about the scene, nor is it restricted to specific scene structures. Furthermore, the technique can detect both achromatic and chromatic shadows even in the presence of camouflage that occurs when foreground regions are very similar in color to shadowed regions. The method exploits local color constancy properties due to reflectance suppression over shadowed regions. To detect shadowed regions in a scene, the values of the background image are divided by values of the current frame in the RGB color space. We show how this luminance ratio can be used to identify segments with low gradient constancy, which in turn distinguish shadows from foreground. Experimental results on a collection of publicly available datasets illustrate the superior performance of our method compared with the most sophisticated, state-of-the-art shadow detection algorithms. These results show that our approach is robust and accurate over a broad range of shadow types and challenging video conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1057-7149 ISBN Medium
Area Expedition Conference
Notes ISE Approved no
Call Number Admin @ si @ AMB2011 Serial 1716
Permanent link to this record
 

 
Author Debora Gil; Petia Radeva
Title A Regularized Curvature Flow Designed for a Selective Shape Restoration Type Journal Article
Year 2004 Publication IEEE Transactions on Image Processing Abbreviated Journal
Volume 13 Issue Pages 1444–1458
Keywords Geometric flows, nonlinear filtering, shape recovery.
Abstract Among all filtering techniques, those based exclu- sively on image level sets (geometric flows) have proven to be the less sensitive to the nature of noise and the most contrast preserving. A common feature to existent curvature flows is that they penalize high curvature, regardless of the curve regularity. This constitutes a major drawback since curvature extreme values are standard descriptors of the contour geometry. We argue that an operator designed with shape recovery purposes should include a term penalizing irregularity in the curvature rather than its magnitude. To this purpose, we present a novel geometric flow that includes a function that measures the degree of local irregularity present in the curve. A main advantage is that it achieves non-trivial steady states representing a smooth model of level curves in a noisy image. Performance of our approach is compared to classical filtering techniques in terms of quality in the restored image/shape and asymptotic behavior. We empirically prove that our approach is the technique that achieves the best compromise between image quality and evolution stabilization.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes IAM;MILAB Approved no
Call Number BCNPCL @ bcnpcl @ GiR2004b Serial 491
Permanent link to this record
 

 
Author Judit Martinez; F. Thomas
Title Efficient Computation of Local Geometric Moments Type Journal Article
Year 2002 Publication IEEE Transactions on Image Porcessing, (IF: 2.553) Abbreviated Journal
Volume 11 Issue 9 Pages 1102-1111
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Admin @ si @ MaT2002 Serial 271
Permanent link to this record
 

 
Author Ajian Liu; Chenxu Zhao; Zitong Yu; Jun Wan; Anyang Su; Xing Liu; Zichang Tan; Sergio Escalera; Junliang Xing; Yanyan Liang; Guodong Guo; Zhen Lei; Stan Z. Li; Shenshen Du
Title Contrastive Context-Aware Learning for 3D High-Fidelity Mask Face Presentation Attack Detection Type Journal Article
Year 2022 Publication IEEE Transactions on Information Forensics and Security Abbreviated Journal TIForensicSEC
Volume 17 Issue Pages 2497 - 2507
Keywords
Abstract Face presentation attack detection (PAD) is essential to secure face recognition systems primarily from high-fidelity mask attacks. Most existing 3D mask PAD benchmarks suffer from several drawbacks: 1) a limited number of mask identities, types of sensors, and a total number of videos; 2) low-fidelity quality of facial masks. Basic deep models and remote photoplethysmography (rPPG) methods achieved acceptable performance on these benchmarks but still far from the needs of practical scenarios. To bridge the gap to real-world applications, we introduce a large-scale Hi gh- Fi delity Mask dataset, namely HiFiMask . Specifically, a total amount of 54,600 videos are recorded from 75 subjects with 225 realistic masks by 7 new kinds of sensors. Along with the dataset, we propose a novel C ontrastive C ontext-aware L earning (CCL) framework. CCL is a new training methodology for supervised PAD tasks, which is able to learn by leveraging rich contexts accurately (e.g., subjects, mask material and lighting) among pairs of live faces and high-fidelity mask attacks. Extensive experimental evaluations on HiFiMask and three additional 3D mask datasets demonstrate the effectiveness of our method. The codes and dataset will be released soon.
Address
Corporate Author Thesis
Publisher IEEE Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HuPBA Approved no
Call Number Admin @ si @ LZY2022 Serial 3778
Permanent link to this record
 

 
Author Marc Bolaños; Mariella Dimiccoli; Petia Radeva
Title Towards Storytelling from Visual Lifelogging: An Overview Type Journal Article
Year 2017 Publication IEEE Transactions on Human-Machine Systems Abbreviated Journal THMS
Volume 47 Issue 1 Pages 77 - 90
Keywords
Abstract Visual lifelogging consists of acquiring images that capture the daily experiences of the user by wearing a camera over a long period of time. The pictures taken offer considerable potential for knowledge mining concerning how people live their lives, hence, they open up new opportunities for many potential applications in fields including healthcare, security, leisure and
the quantified self. However, automatically building a story from a huge collection of unstructured egocentric data presents major challenges. This paper provides a thorough review of advances made so far in egocentric data analysis, and in view of the current state of the art, indicates new lines of research to move us towards storytelling from visual lifelogging.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MILAB; 601.235 Approved no
Call Number Admin @ si @ BDR2017 Serial 2712
Permanent link to this record
 

 
Author Adriana Romero; Carlo Gatta; Gustavo Camps-Valls
Title Unsupervised Deep Feature Extraction for Remote Sensing Image Classification Type Journal Article
Year 2016 Publication IEEE Transaction on Geoscience and Remote Sensing Abbreviated Journal TGRS
Volume 54 Issue 3 Pages 1349 - 1362
Keywords
Abstract This paper introduces the use of single-layer and deep convolutional networks for remote sensing data analysis. Direct application to multi- and hyperspectral imagery of supervised (shallow or deep) convolutional networks is very challenging given the high input data dimensionality and the relatively small amount of available labeled data. Therefore, we propose the use of greedy layerwise unsupervised pretraining coupled with a highly efficient algorithm for unsupervised learning of sparse features. The algorithm is rooted on sparse representations and enforces both population and lifetime sparsity of the extracted features, simultaneously. We successfully illustrate the expressive power of the extracted representations in several scenarios: classification of aerial scenes, as well as land-use classification in very high resolution or land-cover classification from multi- and hyperspectral images. The proposed algorithm clearly outperforms standard principal component analysis (PCA) and its kernel counterpart (kPCA), as well as current state-of-the-art algorithms of aerial classification, while being extremely computationally efficient at learning representations of data. Results show that single-layer convolutional networks can extract powerful discriminative features only when the receptive field accounts for neighboring pixels and are preferred when the classification requires high resolution and detailed results. However, deep architectures significantly outperform single-layer variants, capturing increasing levels of abstraction and complexity throughout the feature hierarchy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0196-2892 ISBN Medium
Area Expedition Conference
Notes LAMP; 600.079;MILAB Approved no
Call Number Admin @ si @ RGC2016 Serial 2723
Permanent link to this record
 

 
Author David Geronimo; Joan Serrat; Antonio Lopez; Ramon Baldrich
Title Traffic sign recognition for computer vision project-based learning Type Journal Article
Year 2013 Publication IEEE Transactions on Education Abbreviated Journal T-EDUC
Volume 56 Issue 3 Pages 364-371
Keywords traffic signs
Abstract This paper presents a graduate course project on computer vision. The aim of the project is to detect and recognize traffic signs in video sequences recorded by an on-board vehicle camera. This is a demanding problem, given that traffic sign recognition is one of the most challenging problems for driving assistance systems. Equally, it is motivating for the students given that it is a real-life problem. Furthermore, it gives them the opportunity to appreciate the difficulty of real-world vision problems and to assess the extent to which this problem can be solved by modern computer vision and pattern classification techniques taught in the classroom. The learning objectives of the course are introduced, as are the constraints imposed on its design, such as the diversity of students' background and the amount of time they and their instructors dedicate to the course. The paper also describes the course contents, schedule, and how the project-based learning approach is applied. The outcomes of the course are discussed, including both the students' marks and their personal feedback.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9359 ISBN Medium
Area Expedition Conference
Notes ADAS; CIC Approved no
Call Number Admin @ si @ GSL2013; ADAS @ adas @ Serial 2160
Permanent link to this record
 

 
Author Pau Rodriguez; Guillem Cucurull; Jordi Gonzalez; Josep M. Gonfaus; Kamal Nasrollahi; Thomas B. Moeslund; Xavier Roca
Title Deep Pain: Exploiting Long Short-Term Memory Networks for Facial Expression Classification Type Journal Article
Year 2017 Publication IEEE Transactions on cybernetics Abbreviated Journal Cyber
Volume Issue Pages 1-11
Keywords
Abstract Pain is an unpleasant feeling that has been shown to be an important factor for the recovery of patients. Since this is costly in human resources and difficult to do objectively, there is the need for automatic systems to measure it. In this paper, contrary to current state-of-the-art techniques in pain assessment, which are based on facial features only, we suggest that the performance can be enhanced by feeding the raw frames to deep learning models, outperforming the latest state-of-the-art results while also directly facing the problem of imbalanced data. As a baseline, our approach first uses convolutional neural networks (CNNs) to learn facial features from VGG_Faces, which are then linked to a long short-term memory to exploit the temporal relation between video frames. We further compare the performances of using the so popular schema based on the canonically normalized appearance versus taking into account the whole image. As a result, we outperform current state-of-the-art area under the curve performance in the UNBC-McMaster Shoulder Pain Expression Archive Database. In addition, to evaluate the generalization properties of our proposed methodology on facial motion recognition, we also report competitive results in the Cohn Kanade+ facial expression database.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ISE; 600.119; 600.098 Approved no
Call Number Admin @ si @ RCG2017a Serial 2926
Permanent link to this record
 

 
Author Alejandro Gonzalez Alzate; David Vazquez; Antonio Lopez; Jaume Amores
Title On-Board Object Detection: Multicue, Multimodal, and Multiview Random Forest of Local Experts Type Journal Article
Year 2017 Publication IEEE Transactions on cybernetics Abbreviated Journal Cyber
Volume 47 Issue 11 Pages 3980 - 3990
Keywords Multicue; multimodal; multiview; object detection
Abstract Despite recent significant advances, object detection continues to be an extremely challenging problem in real scenarios. In order to develop a detector that successfully operates under these conditions, it becomes critical to leverage upon multiple cues, multiple imaging modalities, and a strong multiview (MV) classifier that accounts for different object views and poses. In this paper, we provide an extensive evaluation that gives insight into how each of these aspects (multicue, multimodality, and strong MV classifier) affect accuracy both individually and when integrated together. In the multimodality component, we explore the fusion of RGB and depth maps obtained by high-definition light detection and ranging, a type of modality that is starting to receive increasing attention. As our analysis reveals, although all the aforementioned aspects significantly help in improving the accuracy, the fusion of visible spectrum and depth information allows to boost the accuracy by a much larger margin. The resulting detector not only ranks among the top best performers in the challenging KITTI benchmark, but it is built upon very simple blocks that are easy to implement and computationally efficient.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2168-2267 ISBN Medium
Area Expedition Conference
Notes ADAS; 600.085; 600.082; 600.076; 600.118 Approved no
Call Number Admin @ si @ Serial 2810
Permanent link to this record
 

 
Author Miguel Angel Bautista; Antonio Hernandez; Sergio Escalera; Laura Igual; Oriol Pujol; Josep Moya; Veronica Violant; Maria Teresa Anguera
Title A Gesture Recognition System for Detecting Behavioral Patterns of ADHD Type Journal Article
Year 2016 Publication IEEE Transactions on System, Man and Cybernetics, Part B Abbreviated Journal TSMCB
Volume 46 Issue 1 Pages 136-147
Keywords Gesture Recognition; ADHD; Gaussian Mixture Models; Convex Hulls; Dynamic Time Warping; Multi-modal RGB-Depth data
Abstract We present an application of gesture recognition using an extension of Dynamic Time Warping (DTW) to recognize behavioural patterns of Attention Deficit Hyperactivity Disorder (ADHD). We propose an extension of DTW using one-class classifiers in order to be able to encode the variability of a gesture category, and thus, perform an alignment between a gesture sample and a gesture class. We model the set of gesture samples of a certain gesture category using either GMMs or an approximation of Convex Hulls. Thus, we add a theoretical contribution to classical warping path in DTW by including local modeling of intra-class gesture variability. This methodology is applied in a clinical context, detecting a group of ADHD behavioural patterns defined by experts in psychology/psychiatry, to provide support to clinicians in the diagnose procedure. The proposed methodology is tested on a novel multi-modal dataset (RGB plus Depth) of ADHD children recordings with behavioural patterns. We obtain satisfying results when compared to standard state-of-the-art approaches in the DTW context.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HuPBA; MILAB; Approved no
Call Number Admin @ si @ BHE2016 Serial 2566
Permanent link to this record