toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (up)
Author Danna Xue; Fei Yang; Pei Wang; Luis Herranz; Jinqiu Sun; Yu Zhu; Yanning Zhang edit   pdf
doi  isbn
openurl 
  Title SlimSeg: Slimmable Semantic Segmentation with Boundary Supervision Type Conference Article
  Year 2022 Publication 30th ACM International Conference on Multimedia Abbreviated Journal  
  Volume Issue Pages 6539-6548  
  Keywords  
  Abstract Accurate semantic segmentation models typically require significant computational resources, inhibiting their use in practical applications. Recent works rely on well-crafted lightweight models to achieve fast inference. However, these models cannot flexibly adapt to varying accuracy and efficiency requirements. In this paper, we propose a simple but effective slimmable semantic segmentation (SlimSeg) method, which can be executed at different capacities during inference depending on the desired accuracy-efficiency tradeoff. More specifically, we employ parametrized channel slimming by stepwise downward knowledge distillation during training. Motivated by the observation that the differences between segmentation results of each submodel are mainly near the semantic borders, we introduce an additional boundary guided semantic segmentation loss to further improve the performance of each submodel. We show that our proposed SlimSeg with various mainstream networks can produce flexible models that provide dynamic adjustment of computational cost and better performance than independent models. Extensive experiments on semantic segmentation benchmarks, Cityscapes and CamVid, demonstrate the generalization ability of our framework.  
  Address Lisboa, Portugal, October 2022  
  Corporate Author Thesis  
  Publisher Association for Computing Machinery Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-4503-9203-7 Medium  
  Area Expedition Conference MM  
  Notes MACO; 600.161; 601.400 Approved no  
  Call Number Admin @ si @ XYW2022 Serial 3758  
Permanent link to this record
 

 
Author Marc Masana; Xialei Liu; Bartlomiej Twardowski; Mikel Menta; Andrew Bagdanov; Joost Van de Weijer edit   pdf
doi  openurl
  Title Class-incremental learning: survey and performance evaluation Type Journal Article
  Year 2022 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume Issue Pages  
  Keywords  
  Abstract For future learning systems incremental learning is desirable, because it allows for: efficient resource usage by eliminating the need to retrain from scratch at the arrival of new data; reduced memory usage by preventing or limiting the amount of data required to be stored -- also important when privacy limitations are imposed; and learning that more closely resembles human learning. The main challenge for incremental learning is catastrophic forgetting, which refers to the precipitous drop in performance on previously learned tasks after learning a new one. Incremental learning of deep neural networks has seen explosive growth in recent years. Initial work focused on task incremental learning, where a task-ID is provided at inference time. Recently we have seen a shift towards class-incremental learning where the learner must classify at inference time between all classes seen in previous tasks without recourse to a task-ID. In this paper, we provide a complete survey of existing methods for incremental learning, and in particular we perform an extensive experimental evaluation on twelve class-incremental methods. We consider several new experimental scenarios, including a comparison of class-incremental methods on multiple large-scale datasets, investigation into small and large domain shifts, and comparison on various network architectures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.120 Approved no  
  Call Number Admin @ si @ MLT2022 Serial 3538  
Permanent link to this record
 

 
Author Lu Yu; Xialei Liu; Joost Van de Weijer edit   pdf
doi  openurl
  Title Self-Training for Class-Incremental Semantic Segmentation Type Journal Article
  Year 2022 Publication IEEE Transactions on Neural Networks and Learning Systems Abbreviated Journal TNNLS  
  Volume Issue Pages  
  Keywords Class-incremental learning; Self-training; Semantic segmentation.  
  Abstract In class-incremental semantic segmentation, we have no access to the labeled data of previous tasks. Therefore, when incrementally learning new classes, deep neural networks suffer from catastrophic forgetting of previously learned knowledge. To address this problem, we propose to apply a self-training approach that leverages unlabeled data, which is used for rehearsal of previous knowledge. Specifically, we first learn a temporary model for the current task, and then, pseudo labels for the unlabeled data are computed by fusing information from the old model of the previous task and the current temporary model. In addition, conflict reduction is proposed to resolve the conflicts of pseudo labels generated from both the old and temporary models. We show that maximizing self-entropy can further improve results by smoothing the overconfident predictions. Interestingly, in the experiments, we show that the auxiliary data can be different from the training data and that even general-purpose, but diverse auxiliary data can lead to large performance gains. The experiments demonstrate the state-of-the-art results: obtaining a relative gain of up to 114% on Pascal-VOC 2012 and 8.5% on the more challenging ADE20K compared to previous state-of-the-art methods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.147; 611.008; Approved no  
  Call Number Admin @ si @ YLW2022 Serial 3745  
Permanent link to this record
 

 
Author Saad Minhas; Aura Hernandez-Sabate; Shoaib Ehsan; Klaus McDonald Maier edit  doi
openurl 
  Title Effects of Non-Driving Related Tasks during Self-Driving mode Type Journal Article
  Year 2022 Publication IEEE Transactions on Intelligent Transportation Systems Abbreviated Journal TITS  
  Volume 23 Issue 2 Pages 1391-1399  
  Keywords  
  Abstract Perception reaction time and mental workload have proven to be crucial in manual driving. Moreover, in highly automated cars, where most of the research is focusing on Level 4 Autonomous driving, take-over performance is also a key factor when taking road safety into account. This study aims to investigate how the immersion in non-driving related tasks affects the take-over performance of drivers in given scenarios. The paper also highlights the use of virtual simulators to gather efficient data that can be crucial in easing the transition between manual and autonomous driving scenarios. The use of Computer Aided Simulations is of absolute importance in this day and age since the automotive industry is rapidly moving towards Autonomous technology. An experiment comprising of 40 subjects was performed to examine the reaction times of driver and the influence of other variables in the success of take-over performance in highly automated driving under different circumstances within a highway virtual environment. The results reflect the relationship between reaction times under different scenarios that the drivers might face under the circumstances stated above as well as the importance of variables such as velocity in the success on regaining car control after automated driving. The implications of the results acquired are important for understanding the criteria needed for designing Human Machine Interfaces specifically aimed towards automated driving conditions. Understanding the need to keep drivers in the loop during automation, whilst allowing drivers to safely engage in other non-driving related tasks is an important research area which can be aided by the proposed study.  
  Address Feb. 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; 600.139; 600.145 Approved no  
  Call Number Admin @ si @ MHE2022 Serial 3468  
Permanent link to this record
 

 
Author Yasuko Sugito; Javier Vazquez; Trevor Canham; Marcelo Bertalmio edit  doi
openurl 
  Title Image quality evaluation in professional HDR/WCG production questions the need for HDR metrics Type Journal Article
  Year 2022 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP  
  Volume 31 Issue Pages 5163 - 5177  
  Keywords Measurement; Image color analysis; Image coding; Production; Dynamic range; Brightness; Extraterrestrial measurements  
  Abstract In the quality evaluation of high dynamic range and wide color gamut (HDR/WCG) images, a number of works have concluded that native HDR metrics, such as HDR visual difference predictor (HDR-VDP), HDR video quality metric (HDR-VQM), or convolutional neural network (CNN)-based visibility metrics for HDR content, provide the best results. These metrics consider only the luminance component, but several color difference metrics have been specifically developed for, and validated with, HDR/WCG images. In this paper, we perform subjective evaluation experiments in a professional HDR/WCG production setting, under a real use case scenario. The results are quite relevant in that they show, firstly, that the performance of HDR metrics is worse than that of a classic, simple standard dynamic range (SDR) metric applied directly to the HDR content; and secondly, that the chrominance metrics specifically developed for HDR/WCG imaging have poor correlation with observer scores and are also outperformed by an SDR metric. Based on these findings, we show how a very simple framework for creating color HDR metrics, that uses only luminance SDR metrics, transfer functions, and classic color spaces, is able to consistently outperform, by a considerable margin, state-of-the-art HDR metrics on a varied set of HDR content, for both perceptual quantization (PQ) and Hybrid Log-Gamma (HLG) encoding, luminance and chroma distortions, and on different color spaces of common use.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes 600.161; 611.007 Approved no  
  Call Number Admin @ si @ SVG2022 Serial 3683  
Permanent link to this record
 

 
Author Ajian Liu; Chenxu Zhao; Zitong Yu; Jun Wan; Anyang Su; Xing Liu; Zichang Tan; Sergio Escalera; Junliang Xing; Yanyan Liang; Guodong Guo; Zhen Lei; Stan Z. Li; Shenshen Du edit  doi
openurl 
  Title Contrastive Context-Aware Learning for 3D High-Fidelity Mask Face Presentation Attack Detection Type Journal Article
  Year 2022 Publication IEEE Transactions on Information Forensics and Security Abbreviated Journal TIForensicSEC  
  Volume 17 Issue Pages 2497 - 2507  
  Keywords  
  Abstract Face presentation attack detection (PAD) is essential to secure face recognition systems primarily from high-fidelity mask attacks. Most existing 3D mask PAD benchmarks suffer from several drawbacks: 1) a limited number of mask identities, types of sensors, and a total number of videos; 2) low-fidelity quality of facial masks. Basic deep models and remote photoplethysmography (rPPG) methods achieved acceptable performance on these benchmarks but still far from the needs of practical scenarios. To bridge the gap to real-world applications, we introduce a large-scale Hi gh- Fi delity Mask dataset, namely HiFiMask . Specifically, a total amount of 54,600 videos are recorded from 75 subjects with 225 realistic masks by 7 new kinds of sensors. Along with the dataset, we propose a novel C ontrastive C ontext-aware L earning (CCL) framework. CCL is a new training methodology for supervised PAD tasks, which is able to learn by leveraging rich contexts accurately (e.g., subjects, mask material and lighting) among pairs of live faces and high-fidelity mask attacks. Extensive experimental evaluations on HiFiMask and three additional 3D mask datasets demonstrate the effectiveness of our method. The codes and dataset will be released soon.  
  Address  
  Corporate Author Thesis  
  Publisher IEEE Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA Approved no  
  Call Number Admin @ si @ LZY2022 Serial 3778  
Permanent link to this record
 

 
Author Julio C. S. Jacques Junior; Yagmur Gucluturk; Marc Perez; Umut Guçlu; Carlos Andujar; Xavier Baro; Hugo Jair Escalante; Isabelle Guyon; Marcel A. J. van Gerven; Rob van Lier; Sergio Escalera edit  doi
openurl 
  Title First Impressions: A Survey on Vision-Based Apparent Personality Trait Analysis Type Journal Article
  Year 2022 Publication IEEE Transactions on Affective Computing Abbreviated Journal TAC  
  Volume 13 Issue 1 Pages 75-95  
  Keywords Personality computing; first impressions; person perception; big-five; subjective bias; computer vision; machine learning; nonverbal signals; facial expression; gesture; speech analysis; multi-modal recognition  
  Abstract Personality analysis has been widely studied in psychology, neuropsychology, and signal processing fields, among others. From the past few years, it also became an attractive research area in visual computing. From the computational point of view, by far speech and text have been the most considered cues of information for analyzing personality. However, recently there has been an increasing interest from the computer vision community in analyzing personality from visual data. Recent computer vision approaches are able to accurately analyze human faces, body postures and behaviors, and use these information to infer apparent personality traits. Because of the overwhelming research interest in this topic, and of the potential impact that this sort of methods could have in society, we present in this paper an up-to-date review of existing vision-based approaches for apparent personality trait recognition. We describe seminal and cutting edge works on the subject, discussing and comparing their distinctive features and limitations. Future venues of research in the field are identified and discussed. Furthermore, aspects on the subjectivity in data labeling/evaluation, as well as current datasets and challenges organized to push the research on the field are reviewed.  
  Address 1 Jan.-March 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA Approved no  
  Call Number Admin @ si @ JGP2022 Serial 3724  
Permanent link to this record
 

 
Author Carlos Boned Riera; Oriol Ramos Terrades edit  doi
openurl 
  Title Discriminative Neural Variational Model for Unbalanced Classification Tasks in Knowledge Graph Type Conference Article
  Year 2022 Publication 26th International Conference on Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 2186-2191  
  Keywords Measurement; Couplings; Semantics; Ear; Benchmark testing; Data models; Pattern recognition  
  Abstract Nowadays the paradigm of link discovery problems has shown significant improvements on Knowledge Graphs. However, method performances are harmed by the unbalanced nature of this classification problem, since many methods are easily biased to not find proper links. In this paper we present a discriminative neural variational auto-encoder model, called DNVAE from now on, in which we have introduced latent variables to serve as embedding vectors. As a result, the learnt generative model approximate better the underlying distribution and, at the same time, it better differentiate the type of relations in the knowledge graph. We have evaluated this approach on benchmark knowledge graph and Census records. Results in this last data set are quite impressive since we reach the highest possible score in the evaluation metrics. However, further experiments are still needed to deeper evaluate the performance of the method in more challenging tasks.  
  Address Montreal; Quebec; Canada; August 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICPR  
  Notes DAG; 600.121; 600.162 Approved no  
  Call Number Admin @ si @ BoR2022 Serial 3741  
Permanent link to this record
 

 
Author Mohamed Ali Souibgui; Sanket Biswas; Sana Khamekhem Jemni; Yousri Kessentini; Alicia Fornes; Josep Llados; Umapada Pal edit   pdf
doi  openurl
  Title DocEnTr: An End-to-End Document Image Enhancement Transformer Type Conference Article
  Year 2022 Publication 26th International Conference on Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 1699-1705  
  Keywords Degradation; Head; Optical character recognition; Self-supervised learning; Benchmark testing; Transformers; Magnetic heads  
  Abstract Document images can be affected by many degradation scenarios, which cause recognition and processing difficulties. In this age of digitization, it is important to denoise them for proper usage. To address this challenge, we present a new encoder-decoder architecture based on vision transformers to enhance both machine-printed and handwritten document images, in an end-to-end fashion. The encoder operates directly on the pixel patches with their positional information without the use of any convolutional layers, while the decoder reconstructs a clean image from the encoded patches. Conducted experiments show a superiority of the proposed model compared to the state-of the-art methods on several DIBCO benchmarks. Code and models will be publicly available at: https://github.com/dali92002/DocEnTR  
  Address August 21-25, 2022 , Montréal Québec  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICPR  
  Notes DAG; 600.121; 600.162; 602.230; 600.140 Approved no  
  Call Number Admin @ si @ SBJ2022 Serial 3730  
Permanent link to this record
 

 
Author Alex Gomez-Villa; Bartlomiej Twardowski; Lu Yu; Andrew Bagdanov; Joost Van de Weijer edit   pdf
doi  openurl
  Title Continually Learning Self-Supervised Representations With Projected Functional Regularization Type Conference Article
  Year 2022 Publication CVPR 2022 Workshop on Continual Learning (CLVision, 3rd Edition) Abbreviated Journal  
  Volume Issue Pages 3866-3876  
  Keywords Computer vision; Conferences; Self-supervised learning; Image representation; Pattern recognition  
  Abstract Recent self-supervised learning methods are able to learn high-quality image representations and are closing the gap with supervised approaches. However, these methods are unable to acquire new knowledge incrementally – they are, in fact, mostly used only as a pre-training phase over IID data. In this work we investigate self-supervised methods in continual learning regimes without any replay
mechanism. We show that naive functional regularization,also known as feature distillation, leads to lower plasticity and limits continual learning performance. Instead, we propose Projected Functional Regularization in which a separate temporal projection network ensures that the newly learned feature space preserves information of the previous one, while at the same time allowing for the learning of new features. This prevents forgetting while maintaining the plasticity of the learner. Comparison with other incremental learning approaches applied to self-supervision demonstrates that our method obtains competitive performance in
different scenarios and on multiple datasets.
 
  Address New Orleans, USA; 20 June 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPRW  
  Notes LAMP: 600.147; 600.120 Approved no  
  Call Number Admin @ si @ GTY2022 Serial 3704  
Permanent link to this record
 

 
Author Kai Wang; Xialei Liu; Andrew Bagdanov; Luis Herranz; Shangling Jui; Joost Van de Weijer edit   pdf
doi  openurl
  Title Incremental Meta-Learning via Episodic Replay Distillation for Few-Shot Image Recognition Type Conference Article
  Year 2022 Publication CVPR 2022 Workshop on Continual Learning (CLVision, 3rd Edition) Abbreviated Journal  
  Volume Issue Pages 3728-3738  
  Keywords Training; Computer vision; Image recognition; Upper bound; Conferences; Pattern recognition; Task analysis  
  Abstract In this paper we consider the problem of incremental meta-learning in which classes are presented incrementally in discrete tasks. We propose Episodic Replay Distillation (ERD), that mixes classes from the current task with exemplars from previous tasks when sampling episodes for meta-learning. To allow the training to benefit from a large as possible variety of classes, which leads to more gener-
alizable feature representations, we propose the cross-task meta loss. Furthermore, we propose episodic replay distillation that also exploits exemplars for improved knowledge distillation. Experiments on four datasets demonstrate that ERD surpasses the state-of-the-art. In particular, on the more challenging one-shot, long task sequence scenarios, we reduce the gap between Incremental Meta-Learning and
the joint-training upper bound from 3.5% / 10.1% / 13.4% / 11.7% with the current state-of-the-art to 2.6% / 2.9% / 5.0% / 0.2% with our method on Tiered-ImageNet / Mini-ImageNet / CIFAR100 / CUB, respectively.
 
  Address New Orleans, USA; 20 June 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPRW  
  Notes LAMP; 600.147 Approved no  
  Call Number Admin @ si @ WLB2022 Serial 3686  
Permanent link to this record
 

 
Author Bojana Gajic; Ariel Amato; Ramon Baldrich; Joost Van de Weijer; Carlo Gatta edit   pdf
doi  openurl
  Title Area Under the ROC Curve Maximization for Metric Learning Type Conference Article
  Year 2022 Publication CVPR 2022 Workshop on Efficien Deep Learning for Computer Vision (ECV 2022, 5th Edition) Abbreviated Journal  
  Volume Issue Pages  
  Keywords Training; Computer vision; Conferences; Area measurement; Benchmark testing; Pattern recognition  
  Abstract Most popular metric learning losses have no direct relation with the evaluation metrics that are subsequently applied to evaluate their performance. We hypothesize that training a metric learning model by maximizing the area under the ROC curve (which is a typical performance measure of recognition systems) can induce an implicit ranking suitable for retrieval problems. This hypothesis is supported by previous work that proved that a curve dominates in ROC space if and only if it dominates in Precision-Recall space. To test this hypothesis, we design and maximize an approximated, derivable relaxation of the area under the ROC curve. The proposed AUC loss achieves state-of-the-art results on two large scale retrieval benchmark datasets (Stanford Online Products and DeepFashion In-Shop). Moreover, the AUC loss achieves comparable performance to more complex, domain specific, state-of-the-art methods for vehicle re-identification.  
  Address New Orleans, USA; 20 June 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPRW  
  Notes CIC; LAMP; Approved no  
  Call Number Admin @ si @ GAB2022 Serial 3700  
Permanent link to this record
 

 
Author Mohamed Ramzy Ibrahim; Robert Benavente; Felipe Lumbreras; Daniel Ponsa edit   pdf
doi  openurl
  Title 3DRRDB: Super Resolution of Multiple Remote Sensing Images using 3D Residual in Residual Dense Blocks Type Conference Article
  Year 2022 Publication CVPR 2022 Workshop on IEEE Perception Beyond the Visible Spectrum workshop series (PBVS, 18th Edition) Abbreviated Journal  
  Volume Issue Pages  
  Keywords Training; Solid modeling; Three-dimensional displays; PSNR; Convolution; Superresolution; Pattern recognition  
  Abstract The rapid advancement of Deep Convolutional Neural Networks helped in solving many remote sensing problems, especially the problems of super-resolution. However, most state-of-the-art methods focus more on Single Image Super-Resolution neglecting Multi-Image Super-Resolution. In this work, a new proposed 3D Residual in Residual Dense Blocks model (3DRRDB) focuses on remote sensing Multi-Image Super-Resolution for two different single spectral bands. The proposed 3DRRDB model explores the idea of 3D convolution layers in deeply connected Dense Blocks and the effect of local and global residual connections with residual scaling in Multi-Image Super-Resolution. The model tested on the Proba-V challenge dataset shows a significant improvement above the current state-of-the-art models scoring a Corrected Peak Signal to Noise Ratio (cPSNR) of 48.79 dB and 50.83 dB for Near Infrared (NIR) and RED Bands respectively. Moreover, the proposed 3DRRDB model scores a Corrected Structural Similarity Index Measure (cSSIM) of 0.9865 and 0.9909 for NIR and RED bands respectively.  
  Address New Orleans, USA; 19 June 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPRW  
  Notes MSIAU; 600.130 Approved no  
  Call Number Admin @ si @ IBL2022 Serial 3693  
Permanent link to this record
 

 
Author David Castells; Vinh Ngo; Juan Borrego-Carazo; Marc Codina; Carles Sanchez; Debora Gil; Jordi Carrabina edit  doi
openurl 
  Title A Survey of FPGA-Based Vision Systems for Autonomous Cars Type Journal Article
  Year 2022 Publication IEEE Access Abbreviated Journal ACESS  
  Volume 10 Issue Pages 132525-132563  
  Keywords Autonomous automobile; Computer vision; field programmable gate arrays; reconfigurable architectures  
  Abstract On the road to making self-driving cars a reality, academic and industrial researchers are working hard to continue to increase safety while meeting technical and regulatory constraints Understanding the surrounding environment is a fundamental task in self-driving cars. It requires combining complex computer vision algorithms. Although state-of-the-art algorithms achieve good accuracy, their implementations often require powerful computing platforms with high power consumption. In some cases, the processing speed does not meet real-time constraints. FPGA platforms are often used to implement a category of latency-critical algorithms that demand maximum performance and energy efficiency. Since self-driving car computer vision functions fall into this category, one could expect to see a wide adoption of FPGAs in autonomous cars. In this paper, we survey the computer vision FPGA-based works from the literature targeting automotive applications over the last decade. Based on the survey, we identify the strengths and weaknesses of FPGAs in this domain and future research opportunities and challenges.  
  Address 16 December 2022  
  Corporate Author Thesis  
  Publisher IEEE Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; 600.166 Approved no  
  Call Number Admin @ si @ CNB2022 Serial 3760  
Permanent link to this record
 

 
Author Xavier Soria; Gonzalo Pomboza-Junez; Angel Sappa edit  doi
openurl 
  Title LDC: Lightweight Dense CNN for Edge Detection Type Journal Article
  Year 2022 Publication IEEE Access Abbreviated Journal ACCESS  
  Volume 10 Issue Pages 68281-68290  
  Keywords  
  Abstract This paper presents a Lightweight Dense Convolutional (LDC) neural network for edge detection. The proposed model is an adaptation of two state-of-the-art approaches, but it requires less than 4% of parameters in comparison with these approaches. The proposed architecture generates thin edge maps and reaches the highest score (i.e., ODS) when compared with lightweight models (models with less than 1 million parameters), and reaches a similar performance when compare with heavy architectures (models with about 35 million parameters). Both quantitative and qualitative results and comparisons with state-of-the-art models, using different edge detection datasets, are provided. The proposed LDC does not use pre-trained weights and requires straightforward hyper-parameter settings. The source code is released at https://github.com/xavysp/LDC  
  Address 27 June 2022  
  Corporate Author Thesis  
  Publisher IEEE Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MSIAU; MACO; 600.160; 600.167 Approved no  
  Call Number Admin @ si @ SPS2022 Serial 3751  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: