|   | 
Details
   web
Records
Author C. Alejandro Parraga; Robert Benavente; Maria Vanrell; Ramon Baldrich
Title Psychophysical measurements to model inter-colour regions of colour-naming space Type (down) Journal Article
Year 2009 Publication Journal of Imaging Science and Technology Abbreviated Journal
Volume 53 Issue 3 Pages 031106 (8 pages)
Keywords image processing; Analysis
Abstract JCR Impact Factor 2009: 0.391
In this paper, we present a fuzzy-set of parametric functions which segment the CIE lab space into eleven regions which correspond to the group of common universal categories present in all evolved languages as identified by anthropologists and linguists. The set of functions is intended to model a color-name assignment task by humans and differs from other models in its emphasis on the inter-color boundary regions, which were explicitly measured by means of a psychophysics experiment. In our particular implementation, the CIE lab space was segmented into eleven color categories using a Triple Sigmoid as the fuzzy sets basis, whose parameters are included in this paper. The model’s parameters were adjusted according to the psychophysical results of a yes/no discrimination paradigm where observers had to choose (English) names for isoluminant colors belonging to regions in-between neighboring categories. These colors were presented on a calibrated CRT monitor (14-bit x 3 precision). The experimental results show that inter- color boundary regions are much less defined than expected and color samples other than those near the most representatives are needed to define the position and shape of boundaries between categories. The extended set of model parameters is given as a table.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes CIC Approved no
Call Number CAT @ cat @ PBV2009 Serial 1157
Permanent link to this record
 

 
Author Javier Vazquez; C. Alejandro Parraga; Maria Vanrell; Ramon Baldrich
Title Color Constancy Algorithms: Psychophysical Evaluation on a New Dataset Type (down) Journal Article
Year 2009 Publication Journal of Imaging Science and Technology Abbreviated Journal
Volume 53 Issue 3 Pages 031105–9
Keywords
Abstract The estimation of the illuminant of a scene from a digital image has been the goal of a large amount of research in computer vision. Color constancy algorithms have dealt with this problem by defining different heuristics to select a unique solution from within the feasible set. The performance of these algorithms has shown that there is still a long way to go to globally solve this problem as a preliminary step in computer vision. In general, performance evaluation has been done by comparing the angular error between the estimated chromaticity and the chromaticity of a canonical illuminant, which is highly dependent on the image dataset. Recently, some workers have used high-level constraints to estimate illuminants; in this case selection is based on increasing the performance on the subsequent steps of the systems. In this paper we propose a new performance measure, the perceptual angular error. It evaluates the performance of a color constancy algorithm according to the perceptual preferences of humans, or naturalness (instead of the actual optimal solution) and is independent of the visual task. We show the results of a new psychophysical experiment comparing solutions from three different color constancy algorithms. Our results show that in more than a half of the judgments the preferred solution is not the one closest to the optimal solution. Our experiments were performed on a new dataset of images acquired with a calibrated camera with an attached neutral grey sphere, which better copes with the illuminant variations of the scene.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes CIC Approved no
Call Number CAT @ cat @ VPV2009a Serial 1171
Permanent link to this record
 

 
Author Javier Vazquez; C. Alejandro Parraga; Maria Vanrell
Title Ordinal pairwise method for natural images comparison Type (down) Journal Article
Year 2009 Publication Perception Abbreviated Journal PER
Volume 38 Issue Pages 180
Keywords
Abstract 38(Suppl.)ECVP Abstract Supplement
We developed a new psychophysical method to compare different colour appearance models when applied to natural scenes. The method was as follows: two images (processed by different algorithms) were displayed on a CRT monitor and observers were asked to select the most natural of them. The original images were gathered by means of a calibrated trichromatic digital camera and presented one on top of the other on a calibrated screen. The selection was made by pressing on a 6-button IR box, which allowed observers to consider not only the most natural but to rate their selection. The rating system allowed observers to register how much more natural was their chosen image (eg, much more, definitely more, slightly more), which gave us valuable extra information on the selection process. The results were analysed considering both the selection as a binary choice (using Thurstone's law of comparative judgement) and using Bradley-Terry method for ordinal comparison. Our results show a significant difference in the rating scales obtained. Although this method has been used in colour constancy algorithm comparisons, its uses are much wider, eg to compare algorithms of image compression, rendering, recolouring, etc.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes CIC Approved no
Call Number CAT @ cat @ VPV2009b Serial 1191
Permanent link to this record
 

 
Author Robert Benavente; C. Alejandro Parraga; Maria Vanrell
Title Colour categories boundaries are better defined in contextual conditions Type (down) Journal Article
Year 2009 Publication Perception Abbreviated Journal PER
Volume 38 Issue Pages 36
Keywords
Abstract In a previous experiment [Parraga et al, 2009 Journal of Imaging Science and Technology 53(3)] the boundaries between basic colour categories were measured by asking subjects to categorize colour samples presented in isolation (ie on a dark background) using a YES/NO paradigm. Results showed that some boundaries (eg green – blue) were very diffuse and the subjects' answers presented bimodal distributions, which were attributed to the emergence of non-basic categories in those regions (eg turquoise). To confirm these results we performed a new experiment focussed on the boundaries where bimodal distributions were more evident. In this new experiment rectangular colour samples were presented surrounded by random colour patches to simulate contextual conditions on a calibrated CRT monitor. The names of two neighbouring colours were shown at the bottom of the screen and subjects selected the boundary between these colours by controlling the chromaticity of the central patch, sliding it across these categories' frontier. Results show that in this new experimental paradigm, the formerly uncertain inter-colour category boundaries are better defined and the dispersions (ie the bimodal distributions) that occurred in the previous experiment disappear. These results may provide further support to Berlin and Kay's basic colour terms theory.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes CIC Approved no
Call Number CAT @ cat @ BPV2009 Serial 1192
Permanent link to this record
 

 
Author C. Alejandro Parraga; Javier Vazquez; Maria Vanrell
Title A new cone activation-based natural images dataset Type (down) Journal Article
Year 2009 Publication Perception Abbreviated Journal PER
Volume 36 Issue Pages 180
Keywords
Abstract We generated a new dataset of digital natural images where each colour plane corresponds to the human LMS (long-, medium-, short-wavelength) cone activations. The images were chosen to represent five different visual environments (eg forest, seaside, mountain snow, urban, motorways) and were taken under natural illumination at different times of day. At the bottom-left corner of each picture there was a matte grey ball of approximately constant spectral reflectance (across the camera's response spectrum,) and nearly Lambertian reflective properties, which allows to compute (and remove, if necessary) the illuminant's colour and intensity. The camera (Sigma Foveon SD10) was calibrated by measuring its sensor's spectral responses using a set of 31 spectrally narrowband interference filters. This allowed conversion of the final camera-dependent RGB colour space into the Smith and Pokorny (1975) cone activation space by means of a polynomial transformation, optimised for a set of 1269 Munsell chip reflectances. This new method is an improvement over the usual 3 × 3 matrix transformation which is only accurate for spectrally-narrowband colours. The camera-to-LMS transformation can be recalculated to consider other non-human visual systems. The dataset is available to download from our website.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes CIC Approved no
Call Number CAT @ cat @ PVV2009 Serial 1193
Permanent link to this record
 

 
Author Eduard Vazquez; Theo Gevers; M. Lucassen; Joost Van de Weijer; Ramon Baldrich
Title Saliency of Color Image Derivatives: A Comparison between Computational Models and Human Perception Type (down) Journal Article
Year 2010 Publication Journal of the Optical Society of America A Abbreviated Journal JOSA A
Volume 27 Issue 3 Pages 613–621
Keywords
Abstract In this paper, computational methods are proposed to compute color edge saliency based on the information content of color edges. The computational methods are evaluated on bottom-up saliency in a psychophysical experiment, and on a more complex task of salient object detection in real-world images. The psychophysical experiment demonstrates the relevance of using information theory as a saliency processing model and that the proposed methods are significantly better in predicting color saliency (with a human-method correspondence up to 74.75% and an observer agreement of 86.8%) than state-of-the-art models. Furthermore, results from salient object detection confirm that an early fusion of color and contrast provide accurate performance to compute visual saliency with a hit rate up to 95.2%.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ISE;CIC Approved no
Call Number CAT @ cat @ VGL2010 Serial 1275
Permanent link to this record
 

 
Author O. Fors; J. Nuñez; Xavier Otazu; A. Prades; Robert D. Cardinal
Title Improving the Ability of Image Sensors to Detect Faint Stars and Moving Objects Using Image Deconvolution Techniques Type (down) Journal Article
Year 2010 Publication Sensors Abbreviated Journal SENS
Volume 10 Issue 3 Pages 1743–1752
Keywords image processing; image deconvolution; faint stars; space debris; wavelet transform
Abstract Abstract: In this paper we show how the techniques of image deconvolution can increase the ability of image sensors as, for example, CCD imagers, to detect faint stars or faint orbital objects (small satellites and space debris). In the case of faint stars, we show that this benefit is equivalent to double the quantum efficiency of the used image sensor or to increase the effective telescope aperture by more than 30% without decreasing the astrometric precision or introducing artificial bias. In the case of orbital objects, the deconvolution technique can double the signal-to-noise ratio of the image, which helps to discover and control dangerous objects as space debris or lost satellites. The benefits obtained using CCD detectors can be extrapolated to any kind of image sensors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes CIC Approved no
Call Number CAT @ cat @ FNO2010 Serial 1285
Permanent link to this record
 

 
Author Alicia Fornes; Josep Llados; Gemma Sanchez; Xavier Otazu; Horst Bunke
Title A Combination of Features for Symbol-Independent Writer Identification in Old Music Scores Type (down) Journal Article
Year 2010 Publication International Journal on Document Analysis and Recognition Abbreviated Journal IJDAR
Volume 13 Issue 4 Pages 243-259
Keywords
Abstract The aim of writer identification is determining the writer of a piece of handwriting from a set of writers. In this paper, we present an architecture for writer identification in old handwritten music scores. Even though an important amount of music compositions contain handwritten text, the aim of our work is to use only music notation to determine the author. The main contribution is therefore the use of features extracted from graphical alphabets. Our proposal consists in combining the identification results of two different approaches, based on line and textural features. The steps of the ensemble architecture are the following. First of all, the music sheet is preprocessed for removing the staff lines. Then, music lines and texture images are generated for computing line features and textural features. Finally, the classification results are combined for identifying the writer. The proposed method has been tested on a database of old music scores from the seventeenth to nineteenth centuries, achieving a recognition rate of about 92% with 20 writers.
Address
Corporate Author Thesis
Publisher Springer-Verlag Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1433-2833 ISBN Medium
Area Expedition Conference
Notes DAG; CAT;CIC Approved no
Call Number FLS2010b Serial 1319
Permanent link to this record
 

 
Author C. Alejandro Parraga; Robert Benavente; Maria Vanrell
Title Towards a general model of colour categorization which considers context Type (down) Journal Article
Year 2010 Publication Perception. ECVP Abstract Supplement Abbreviated Journal PER
Volume 39 Issue Pages 86
Keywords
Abstract In two previous experiments [Parraga et al, 2009 J. of Im. Sci. and Tech 53(3) 031106; Benavente et al,2009 Perception 38 ECVP Supplement, 36] the boundaries of basic colour categories were measured.
In the first experiment, samples were presented in isolation (ie on a dark background) and boundaries were measured using a yes/no paradigm. In the second, subjects adjusted the chromaticity of a sample presented on a random Mondrian background to find the boundary between pairs of adjacent colours.
Results from these experiments showed significant di erences but it was not possible to conclude whether this discrepancy was due to the absence/presence of a colourful background or to the di erences in the paradigms used. In this work, we settle this question by repeating the first experiment (ie samples presented on a dark background) using the second paradigm. A comparison of results shows that
although boundary locations are very similar, boundaries measured in context are significantly di erent(more di use) than those measured in isolation (confirmed by a Student’s t-test analysis on the subject’s answers statistical distributions). In addition, we completed the mapping of colour name space by measuring the boundaries between chromatic colours and the achromatic centre. With these results we
completed our parametric fuzzy-sets model of colour naming space.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes CIC Approved no
Call Number CAT @ cat @ PBV2010b Serial 1326
Permanent link to this record
 

 
Author Olivier Penacchio; C. Alejandro Parraga; Maria Vanrell
Title Natural Scene Statistics account for Human Cones Ratios Type (down) Journal Article
Year 2010 Publication Perception. ECVP Abstract Supplement Abbreviated Journal PER
Volume 39 Issue Pages 101
Keywords
Abstract In two previous experiments [Parraga et al, 2009 J. of Im. Sci. and Tech 53(3) 031106; Benavente et al,2009 Perception 38 ECVP Supplement, 36] the boundaries of basic colour categories were measured.
In the first experiment, samples were presented in isolation (ie on a dark background) and boundaries were measured using a yes/no paradigm. In the second, subjects adjusted the chromaticity of a sample presented on a random Mondrian background to find the boundary between pairs of adjacent colours.
Results from these experiments showed significant di erences but it was not possible to conclude whether this discrepancy was due to the absence/presence of a colourful background or to the di erences in the paradigms used. In this work, we settle this question by repeating the first experiment (ie samples presented on a dark background) using the second paradigm. A comparison of results shows that
although boundary locations are very similar, boundaries measured in context are significantly di erent(more di use) than those measured in isolation (confirmed by a Student’s t-test analysis on the subject’s answers statistical distributions). In addition, we completed the mapping of colour name space by measuring the boundaries between chromatic colours and the achromatic centre. With these results we completed our parametric fuzzy-sets model of colour naming space.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes CIC Approved no
Call Number CAT @ cat @ PPV2010 Serial 1357
Permanent link to this record
 

 
Author Xavier Otazu; C. Alejandro Parraga; Maria Vanrell
Title Towards a unified chromatic inducction model Type (down) Journal Article
Year 2010 Publication Journal of Vision Abbreviated Journal VSS
Volume 10 Issue 12:5 Pages 1-24
Keywords Visual system; Color induction; Wavelet transform
Abstract In a previous work (X. Otazu, M. Vanrell, & C. A. Párraga, 2008b), we showed how several brightness induction effects can be predicted using a simple multiresolution wavelet model (BIWaM). Here we present a new model for chromatic induction processes (termed Chromatic Induction Wavelet Model or CIWaM), which is also implemented on a multiresolution framework and based on similar assumptions related to the spatial frequency and the contrast surround energy of the stimulus. The CIWaM can be interpreted as a very simple extension of the BIWaM to the chromatic channels, which in our case are defined in the MacLeod-Boynton (lsY) color space. This new model allows us to unify both chromatic assimilation and chromatic contrast effects in a single mathematical formulation. The predictions of the CIWaM were tested by means of several color and brightness induction experiments, which showed an acceptable agreement between model predictions and psychophysical data.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes CIC Approved no
Call Number CAT @ cat @ OPV2010 Serial 1450
Permanent link to this record
 

 
Author Eduard Vazquez; Ramon Baldrich; Joost Van de Weijer; Maria Vanrell
Title Describing Reflectances for Colour Segmentation Robust to Shadows, Highlights and Textures Type (down) Journal Article
Year 2011 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI
Volume 33 Issue 5 Pages 917-930
Keywords
Abstract The segmentation of a single material reflectance is a challenging problem due to the considerable variation in image measurements caused by the geometry of the object, shadows, and specularities. The combination of these effects has been modeled by the dichromatic reflection model. However, the application of the model to real-world images is limited due to unknown acquisition parameters and compression artifacts. In this paper, we present a robust model for the shape of a single material reflectance in histogram space. The method is based on a multilocal creaseness analysis of the histogram which results in a set of ridges representing the material reflectances. The segmentation method derived from these ridges is robust to both shadow, shading and specularities, and texture in real-world images. We further complete the method by incorporating prior knowledge from image statistics, and incorporate spatial coherence by using multiscale color contrast information. Results obtained show that our method clearly outperforms state-of-the-art segmentation methods on a widely used segmentation benchmark, having as a main characteristic its excellent performance in the presence of shadows and highlights at low computational cost.
Address Los Alamitos; CA; USA;
Corporate Author Thesis
Publisher IEEE Computer Society Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0162-8828 ISBN Medium
Area Expedition Conference
Notes CIC Approved no
Call Number Admin @ si @ VBW2011 Serial 1715
Permanent link to this record
 

 
Author Arjan Gijsenij; Theo Gevers; Joost Van de Weijer
Title Computational Color Constancy: Survey and Experiments Type (down) Journal Article
Year 2011 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP
Volume 20 Issue 9 Pages 2475-2489
Keywords computational color constancy;computer vision application;gamut-based method;learning-based method;static method;colour vision;computer vision;image colour analysis;learning (artificial intelligence);lighting
Abstract Computational color constancy is a fundamental prerequisite for many computer vision applications. This paper presents a survey of many recent developments and state-of-the- art methods. Several criteria are proposed that are used to assess the approaches. A taxonomy of existing algorithms is proposed and methods are separated in three groups: static methods, gamut-based methods and learning-based methods. Further, the experimental setup is discussed including an overview of publicly available data sets. Finally, various freely available methods, of which some are considered to be state-of-the-art, are evaluated on two data sets.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1057-7149 ISBN Medium
Area Expedition Conference
Notes ISE;CIC Approved no
Call Number Admin @ si @ GGW2011 Serial 1717
Permanent link to this record
 

 
Author Xavier Boix; Josep M. Gonfaus; Joost Van de Weijer; Andrew Bagdanov; Joan Serrat; Jordi Gonzalez
Title Harmony Potentials: Fusing Global and Local Scale for Semantic Image Segmentation Type (down) Journal Article
Year 2012 Publication International Journal of Computer Vision Abbreviated Journal IJCV
Volume 96 Issue 1 Pages 83-102
Keywords
Abstract The Hierarchical Conditional Random Field(HCRF) model have been successfully applied to a number of image labeling problems, including image segmentation. However, existing HCRF models of image segmentation do not allow multiple classes to be assigned to a single region, which limits their ability to incorporate contextual information across multiple scales.
At higher scales in the image, this representation yields an oversimpli ed model since multiple classes can be reasonably expected to appear within large regions. This simpli ed model particularly limits the impact of information at higher scales. Since class-label information at these scales is usually more reliable than at lower, noisier scales, neglecting this information is undesirable. To
address these issues, we propose a new consistency potential for image labeling problems, which we call the harmony potential. It can encode any possible combi-
nation of labels, penalizing only unlikely combinations of classes. We also propose an e ective sampling strategy over this expanded label set that renders tractable the underlying optimization problem. Our approach obtains state-of-the-art results on two challenging, standard benchmark datasets for semantic image segmentation: PASCAL VOC 2010, and MSRC-21.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0920-5691 ISBN Medium
Area Expedition Conference
Notes ISE;CIC;ADAS Approved no
Call Number Admin @ si @ BGW2012 Serial 1718
Permanent link to this record
 

 
Author Olivier Penacchio; C. Alejandro Parraga
Title What is the best criterion for an efficient design of retinal photoreceptor mosaics? Type (down) Journal Article
Year 2011 Publication Perception Abbreviated Journal PER
Volume 40 Issue Pages 197
Keywords
Abstract The proportions of L, M and S photoreceptors in the primate retina are arguably determined by evolutionary pressure and the statistics of the visual environment. Two information theory-based approaches have been recently proposed for explaining the asymmetrical spatial densities of photoreceptors in humans. In the first approach Garrigan et al (2010 PLoS ONE 6 e1000677), a model for computing the information transmitted by cone arrays which considers the differential blurring produced by the long-wavelength accommodation of the eye’s lens is proposed. Their results explain the sparsity of S-cones but the optimum depends weakly on the L:M cone ratio. In the second approach (Penacchio et al, 2010 Perception 39 ECVP Supplement, 101), we show that human cone arrays make the visual representation scale-invariant, allowing the total entropy of the signal to be preserved while decreasing individual neurons’ entropy in further retinotopic representations. This criterion provides a thorough description of the distribution of L:M cone ratios and does not depend on differential blurring of the signal by the lens. Here, we investigate the similarities and differences of both approaches when applied to the same database. Our results support a 2-criteria optimization in the space of cone ratios whose components are arguably important and mostly unrelated.
[This work was partially funded by projects TIN2010-21771-C02-1 and Consolider-Ingenio 2010-CSD2007-00018 from the Spanish MICINN. CAP was funded by grant RYC-2007-00484]
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes CIC Approved no
Call Number Admin @ si @ PeP2011a Serial 1719
Permanent link to this record
 

 
Author C. Alejandro Parraga; Olivier Penacchio; Maria Vanrell
Title Retinal Filtering Matches Natural Image Statistics at Low Luminance Levels Type (down) Journal Article
Year 2011 Publication Perception Abbreviated Journal PER
Volume 40 Issue Pages 96
Keywords
Abstract The assumption that the retina’s main objective is to provide a minimum entropy representation to higher visual areas (ie efficient coding principle) allows to predict retinal filtering in space–time and colour (Atick, 1992 Network 3 213–251). This is achieved by considering the power spectra of natural images (which is proportional to 1/f2) and the suppression of retinal and image noise. However, most studies consider images within a limited range of lighting conditions (eg near noon) whereas the visual system’s spatial filtering depends on light intensity and the spatiochromatic properties of natural scenes depend of the time of the day. Here, we explore whether the dependence of visual spatial filtering on luminance match the changes in power spectrum of natural scenes at different times of the day. Using human cone-activation based naturalistic stimuli (from the Barcelona Calibrated Images Database), we show that for a range of luminance levels, the shape of the retinal CSF reflects the slope of the power spectrum at low spatial frequencies. Accordingly, the retina implements the filtering which best decorrelates the input signal at every luminance level. This result is in line with the body of work that places efficient coding as a guiding neural principle.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes CIC Approved no
Call Number Admin @ si @ PPV2011 Serial 1720
Permanent link to this record
 

 
Author Olivier Penacchio
Title Mixed Hodge Structures and Equivariant Sheaves on the Projective Plane Type (down) Journal Article
Year 2011 Publication Mathematische Nachrichten Abbreviated Journal MN
Volume 284 Issue 4 Pages 526-542
Keywords Mixed Hodge structures, equivariant sheaves, MSC (2010) Primary: 14C30, Secondary: 14F05, 14M25
Abstract We describe an equivalence of categories between the category of mixed Hodge structures and a category of equivariant vector bundles on a toric model of the complex projective plane which verify some semistability condition. We then apply this correspondence to define an invariant which generalizes the notion of R-split mixed Hodge structure and give calculations for the first group of cohomology of possibly non smooth or non-complete curves of genus 0 and 1. Finally, we describe some extension groups of mixed Hodge structures in terms of equivariant extensions of coherent sheaves. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Address
Corporate Author Thesis
Publisher WILEY-VCH Verlag Place of Publication Editor R. Mennicken
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1522-2616 ISBN Medium
Area Expedition Conference
Notes CIC Approved no
Call Number Admin @ si @ Pen2011 Serial 1721
Permanent link to this record
 

 
Author C. Alejandro Parraga; Jordi Roca; Maria Vanrell
Title Do Basic Colors Influence Chromatic Adaptation? Type (down) Journal Article
Year 2011 Publication Journal of Vision Abbreviated Journal VSS
Volume 11 Issue 11 Pages 85
Keywords
Abstract Color constancy (the ability to perceive colors relatively stable under different illuminants) is the result of several mechanisms spread across different neural levels and responding to several visual scene cues. It is usually measured by estimating the perceived color of a grey patch under an illuminant change. In this work, we hypothesize whether chromatic adaptation (without a reference white or grey) could be driven by certain colors, specifically those corresponding to the universal color terms proposed by Berlin and Kay (1969). To this end we have developed a new psychophysical paradigm in which subjects adjust the color of a test patch (in CIELab space) to match their memory of the best example of a given color chosen from the universal terms list (grey, red, green, blue, yellow, purple, pink, orange and brown). The test patch is embedded inside a Mondrian image and presented on a calibrated CRT screen inside a dark cabin. All subjects were trained to “recall” their most exemplary colors reliably from memory and asked to always produce the same basic colors when required under several adaptation conditions. These include achromatic and colored Mondrian backgrounds, under a simulated D65 illuminant and several colored illuminants. A set of basic colors were measured for each subject under neutral conditions (achromatic background and D65 illuminant) and used as “reference” for the rest of the experiment. The colors adjusted by the subjects in each adaptation condition were compared to the reference colors under the corresponding illuminant and a “constancy index” was obtained for each of them. Our results show that for some colors the constancy index was better than for grey. The set of best adapted colors in each condition were common to a majority of subjects and were dependent on the chromaticity of the illuminant and the chromatic background considered.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1534-7362 ISBN Medium
Area Expedition Conference
Notes CIC Approved no
Call Number Admin @ si @ PRV2011 Serial 1759
Permanent link to this record