| 
Citations
 | 
   web
Chenshen Wu, Luis Herranz, Xialei Liu, Joost Van de Weijer, & Bogdan Raducanu. (2018). Memory Replay GANs: Learning to Generate New Categories without Forgetting. In 32nd Annual Conference on Neural Information Processing Systems (pp. 5966–5976).
toggle visibility
Bojana Gajic, Ariel Amato, Ramon Baldrich, & Carlo Gatta. (2019). Bag of Negatives for Siamese Architectures. In 30th British Machine Vision Conference.
toggle visibility
Lichao Zhang, Abel Gonzalez-Garcia, Joost Van de Weijer, Martin Danelljan, & Fahad Shahbaz Khan. (2019). Learning the Model Update for Siamese Trackers. In 18th IEEE International Conference on Computer Vision (pp. 4009–4018).
toggle visibility
Lichao Zhang, Martin Danelljan, Abel Gonzalez-Garcia, Joost Van de Weijer, & Fahad Shahbaz Khan. (2019). Multi-Modal Fusion for End-to-End RGB-T Tracking. In IEEE International Conference on Computer Vision Workshops (pp. 2252–2261).
toggle visibility
Lu Yu, Vacit Oguz Yazici, Xialei Liu, Joost Van de Weijer, Yongmei Cheng, & Arnau Ramisa. (2019). Learning Metrics from Teachers: Compact Networks for Image Embedding. In 32nd IEEE Conference on Computer Vision and Pattern Recognition (pp. 2907–2916).
toggle visibility
Javad Zolfaghari Bengar, Abel Gonzalez-Garcia, Gabriel Villalonga, Bogdan Raducanu, Hamed H. Aghdam, Mikhail Mozerov, et al. (2019). Temporal Coherence for Active Learning in Videos. In IEEE International Conference on Computer Vision Workshops (pp. 914–923).
toggle visibility
Hamed H. Aghdam, Abel Gonzalez-Garcia, Joost Van de Weijer, & Antonio Lopez. (2019). Active Learning for Deep Detection Neural Networks. In 18th IEEE International Conference on Computer Vision (pp. 3672–3680).
toggle visibility
Yaxing Wang, Abel Gonzalez-Garcia, Joost Van de Weijer, & Luis Herranz. (2019). SDIT: Scalable and Diverse Cross-domain Image Translation. In 27th ACM International Conference on Multimedia (1267–1276).
toggle visibility
C. Alejandro Parraga, Xavier Otazu, & Arash Akbarinia. (2019). Modelling symmetry perception with banks of quadrature convolutional Gabor kernels. In 42nd edition of the European Conference on Visual Perception (p. 224).
toggle visibility
David Berga, Xose R. Fernandez-Vidal, Xavier Otazu, & Xose M. Pardo. (2019). SID4VAM: A Benchmark Dataset with Synthetic Images for Visual Attention Modeling. In 18th IEEE International Conference on Computer Vision (pp. 8788–8797).
toggle visibility
David Berga, & Xavier Otazu. (2019). Computations of inhibition of return mechanisms by modulating V1 dynamics. In 28th Annual Computational Neuroscience Meeting.
toggle visibility
David Berga, & Xavier Otazu. (2019). Computational modelingof visual attention: What do we know from physiology and psychophysics? In 8th Iberian Conference on Perception.
toggle visibility
David Berga, Xose R. Fernandez-Vidal, Xavier Otazu, Victor Leboran, & Xose M. Pardo. (2019). Measuring bottom-up visual attention in eye tracking experimentation with synthetic images. In 8th Iberian Conference on Perception.
toggle visibility
David Berga, & Xavier Otazu. (2020). Computations of top-down attention by modulating V1 dynamics. In Computational and Mathematical Models in Vision.
toggle visibility
Vacit Oguz Yazici, Abel Gonzalez-Garcia, Arnau Ramisa, Bartlomiej Twardowski, & Joost Van de Weijer. (2020). Orderless Recurrent Models for Multi-label Classification. In 33rd IEEE Conference on Computer Vision and Pattern Recognition.
toggle visibility
Xialei Liu, Chenshen Wu, Mikel Menta, Luis Herranz, Bogdan Raducanu, Andrew Bagdanov, et al. (2020). Generative Feature Replay for Class-Incremental Learning. In CLVISION – Workshop on Continual Learning in Computer Vision.
toggle visibility
Yaxing Wang, Abel Gonzalez-Garcia, David Berga, Luis Herranz, Fahad Shahbaz Khan, & Joost Van de Weijer. (2020). MineGAN: effective knowledge transfer from GANs to target domains with few images. In 33rd IEEE Conference on Computer Vision and Pattern Recognition.
toggle visibility
Lu Yu, Bartlomiej Twardowski, Xialei Liu, Luis Herranz, Kai Wang, Yongmai Cheng, et al. (2020). Semantic Drift Compensation for Class-Incremental Learning of Embeddings. In 33rd IEEE Conference on Computer Vision and Pattern Recognition.
toggle visibility