toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Youssef El Rhabi; Simon Loic; Brun Luc; Josep Llados; Felipe Lumbreras edit  doi
openurl 
  Title (down) Information Theoretic Rotationwise Robust Binary Descriptor Learning Type Conference Article
  Year 2016 Publication Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR) Abbreviated Journal  
  Volume Issue Pages 368-378  
  Keywords  
  Abstract In this paper, we propose a new data-driven approach for binary descriptor selection. In order to draw a clear analysis of common designs, we present a general information-theoretic selection paradigm. It encompasses several standard binary descriptor construction schemes, including a recent state-of-the-art one named BOLD. We pursue the same endeavor to increase the stability of the produced descriptors with respect to rotations. To achieve this goal, we have designed a novel offline selection criterion which is better adapted to the online matching procedure. The effectiveness of our approach is demonstrated on two standard datasets, where our descriptor is compared to BOLD and to several classical descriptors. In particular, it emerges that our approach can reproduce equivalent if not better performance as BOLD while relying on twice shorter descriptors. Such an improvement can be influential for real-time applications.  
  Address Mérida; Mexico; November 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference S+SSPR  
  Notes DAG; ADAS; 600.097; 600.086 Approved no  
  Call Number Admin @ si @ RLL2016 Serial 2871  
Permanent link to this record
 

 
Author Miguel Oliveira; Victor Santos; Angel Sappa; P. Dias; A. Moreira edit   pdf
url  openurl
  Title (down) Incremental texture mapping for autonomous driving Type Journal Article
  Year 2016 Publication Robotics and Autonomous Systems Abbreviated Journal RAS  
  Volume 84 Issue Pages 113-128  
  Keywords Scene reconstruction; Autonomous driving; Texture mapping  
  Abstract Autonomous vehicles have a large number of on-board sensors, not only for providing coverage all around the vehicle, but also to ensure multi-modality in the observation of the scene. Because of this, it is not trivial to come up with a single, unique representation that feeds from the data given by all these sensors. We propose an algorithm which is capable of mapping texture collected from vision based sensors onto a geometric description of the scenario constructed from data provided by 3D sensors. The algorithm uses a constrained Delaunay triangulation to produce a mesh which is updated using a specially devised sequence of operations. These enforce a partial configuration of the mesh that avoids bad quality textures and ensures that there are no gaps in the texture. Results show that this algorithm is capable of producing fine quality textures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.086 Approved no  
  Call Number Admin @ si @ OSS2016b Serial 2912  
Permanent link to this record
 

 
Author Miguel Oliveira; Victor Santos; Angel Sappa; P. Dias; A. Moreira edit   pdf
doi  openurl
  Title (down) Incremental Scenario Representations for Autonomous Driving using Geometric Polygonal Primitives Type Journal Article
  Year 2016 Publication Robotics and Autonomous Systems Abbreviated Journal RAS  
  Volume 83 Issue Pages 312-325  
  Keywords Incremental scene reconstruction; Point clouds; Autonomous vehicles; Polygonal primitives  
  Abstract When an autonomous vehicle is traveling through some scenario it receives a continuous stream of sensor data. This sensor data arrives in an asynchronous fashion and often contains overlapping or redundant information. Thus, it is not trivial how a representation of the environment observed by the vehicle can be created and updated over time. This paper presents a novel methodology to compute an incremental 3D representation of a scenario from 3D range measurements. We propose to use macro scale polygonal primitives to model the scenario. This means that the representation of the scene is given as a list of large scale polygons that describe the geometric structure of the environment. Furthermore, we propose mechanisms designed to update the geometric polygonal primitives over time whenever fresh sensor data is collected. Results show that the approach is capable of producing accurate descriptions of the scene, and that it is computationally very efficient when compared to other reconstruction techniques.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier B.V. Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.086, 600.076 Approved no  
  Call Number Admin @ si @OSS2016a Serial 2806  
Permanent link to this record
 

 
Author Dena Bazazian; Raul Gomez; Anguelos Nicolaou; Lluis Gomez; Dimosthenis Karatzas; Andrew Bagdanov edit   pdf
openurl 
  Title (down) Improving Text Proposals for Scene Images with Fully Convolutional Networks Type Conference Article
  Year 2016 Publication 23rd International Conference on Pattern Recognition Workshops Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Text Proposals have emerged as a class-dependent version of object proposals – efficient approaches to reduce the search space of possible text object locations in an image. Combined with strong word classifiers, text proposals currently yield top state of the art results in end-to-end scene text
recognition. In this paper we propose an improvement over the original Text Proposals algorithm of [1], combining it with Fully Convolutional Networks to improve the ranking of proposals. Results on the ICDAR RRC and the COCO-text datasets show superior performance over current state-of-the-art.
 
  Address Cancun; Mexico; December 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICPRW  
  Notes DAG; LAMP; 600.084 Approved no  
  Call Number Admin @ si @ BGN2016 Serial 2823  
Permanent link to this record
 

 
Author Marc Oliu; Ciprian Corneanu; Kamal Nasrollahi; Olegs Nikisins; Sergio Escalera; Yunlian Sun; Haiqing Li; Zhenan Sun; Thomas B. Moeslund; Modris Greitans edit  url
openurl 
  Title (down) Improved RGB-D-T based Face Recognition Type Journal Article
  Year 2016 Publication IET Biometrics Abbreviated Journal BIO  
  Volume 5 Issue 4 Pages 297 - 303  
  Keywords  
  Abstract Reliable facial recognition systems are of crucial importance in various applications from entertainment to security. Thanks to the deep-learning concepts introduced in the field, a significant improvement in the performance of the unimodal facial recognition systems has been observed in the recent years. At the same time a multimodal facial recognition is a promising approach. This study combines the latest successes in both directions by applying deep learning convolutional neural networks (CNN) to the multimodal RGB, depth, and thermal (RGB-D-T) based facial recognition problem outperforming previously published results. Furthermore, a late fusion of the CNN-based recognition block with various hand-crafted features (local binary patterns, histograms of oriented gradients, Haar-like rectangular features, histograms of Gabor ordinal measures) is introduced, demonstrating even better recognition performance on a benchmark RGB-D-T database. The obtained results in this study show that the classical engineered features and CNN-based features can complement each other for recognition purposes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB; Approved no  
  Call Number Admin @ si @ OCN2016 Serial 2854  
Permanent link to this record
 

 
Author Dimosthenis Karatzas; V. Poulain d'Andecy; Marçal Rusiñol edit   pdf
doi  openurl
  Title (down) Human-Document Interaction – a new frontier for document image analysis Type Conference Article
  Year 2016 Publication 12th IAPR Workshop on Document Analysis Systems Abbreviated Journal  
  Volume Issue Pages 369-374  
  Keywords  
  Abstract All indications show that paper documents will not cede in favour of their digital counterparts, but will instead be used increasingly in conjunction with digital information. An open challenge is how to seamlessly link the physical with the digital – how to continue taking advantage of the important affordances of paper, without missing out on digital functionality. This paper
presents the authors’ experience with developing systems for Human-Document Interaction based on augmented document interfaces and examines new challenges and opportunities arising for the document image analysis field in this area. The system presented combines state of the art camera-based document
image analysis techniques with a range of complementary tech-nologies to offer fluid Human-Document Interaction. Both fixed and nomadic setups are discussed that have gone through user testing in real-life environments, and use cases are presented that span the spectrum from business to educational application
 
  Address Santorini; Greece; April 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference DAS  
  Notes DAG; 600.084; 600.077 Approved no  
  Call Number KPR2016 Serial 2756  
Permanent link to this record
 

 
Author Wenjuan Gong; Xuena Zhang; Jordi Gonzalez; Andrews Sobral; Thierry Bouwmans; Changhe Tu; El-hadi Zahzah edit   pdf
url  doi
openurl 
  Title (down) Human Pose Estimation from Monocular Images: A Comprehensive Survey Type Journal Article
  Year 2016 Publication Sensors Abbreviated Journal SENS  
  Volume 16 Issue 12 Pages 1966  
  Keywords human pose estimation; human bodymodels; generativemethods; discriminativemethods; top-down methods; bottom-up methods  
  Abstract Human pose estimation refers to the estimation of the location of body parts and how they are connected in an image. Human pose estimation from monocular images has wide applications (e.g., image indexing). Several surveys on human pose estimation can be found in the literature, but they focus on a certain category; for example, model-based approaches or human motion analysis, etc. As far as we know, an overall review of this problem domain has yet to be provided. Furthermore, recent advancements based on deep learning have brought novel algorithms for this problem. In this paper, a comprehensive survey of human pose estimation from monocular images is carried out including milestone works and recent advancements. Based on one standard pipeline for the solution of computer vision problems, this survey splits the problem into several modules: feature extraction and description, human body models, and modeling
methods. Problem modeling methods are approached based on two means of categorization in this survey. One way to categorize includes top-down and bottom-up methods, and another way includes generative and discriminative methods. Considering the fact that one direct application of human pose estimation is to provide initialization for automatic video surveillance, there are additional sections for motion-related methods in all modules: motion features, motion models, and motion-based methods. Finally, the paper also collects 26 publicly available data sets for validation and provides error measurement methods that are frequently used.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ISE; 600.098; 600.119 Approved no  
  Call Number Admin @ si @ GZG2016 Serial 2933  
Permanent link to this record
 

 
Author Iiris Lusi; Sergio Escalera; Gholamreza Anbarjafari edit  doi
openurl 
  Title (down) Human Head Pose Estimation on SASE database using Random Hough Regression Forests Type Conference Article
  Year 2016 Publication 23rd International Conference on Pattern Recognition Workshops Abbreviated Journal  
  Volume 10165 Issue Pages  
  Keywords  
  Abstract In recent years head pose estimation has become an important task in face analysis scenarios. Given the availability of high resolution 3D sensors, the design of a high resolution head pose database would be beneficial for the community. In this paper, Random Hough Forests are used to estimate 3D head pose and location on a new 3D head database, SASE, which represents the baseline performance on the new data for an upcoming international head pose estimation competition. The data in SASE is acquired with a Microsoft Kinect 2 camera, including the RGB and depth information of 50 subjects with a large sample of head poses, allowing us to test methods for real-life scenarios. We briefly review the database while showing baseline head pose estimation results based on Random Hough Forests.  
  Address Cancun; Mexico; December 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICPRW  
  Notes HuPBA; Approved no  
  Call Number Admin @ si @ LEA2016b Serial 2910  
Permanent link to this record
 

 
Author Esteve Cervantes; Long Long Yu; Andrew Bagdanov; Marc Masana; Joost Van de Weijer edit   pdf
openurl 
  Title (down) Hierarchical Part Detection with Deep Neural Networks Type Conference Article
  Year 2016 Publication 23rd IEEE International Conference on Image Processing Abbreviated Journal  
  Volume Issue Pages  
  Keywords Object Recognition; Part Detection; Convolutional Neural Networks  
  Abstract Part detection is an important aspect of object recognition. Most approaches apply object proposals to generate hundreds of possible part bounding box candidates which are then evaluated by part classifiers. Recently several methods have investigated directly regressing to a limited set of bounding boxes from deep neural network representation. However, for object parts such methods may be unfeasible due to their relatively small size with respect to the image. We propose a hierarchical method for object and part detection. In a single network we first detect the object and then regress to part location proposals based only on the feature representation inside the object. Experiments show that our hierarchical approach outperforms a network which directly regresses the part locations. We also show that our approach obtains part detection accuracy comparable or better than state-of-the-art on the CUB-200 bird and Fashionista clothing item datasets with only a fraction of the number of part proposals.  
  Address Phoenix; Arizona; USA; September 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICIP  
  Notes LAMP; 600.106 Approved no  
  Call Number Admin @ si @ CLB2016 Serial 2762  
Permanent link to this record
 

 
Author Jiaolong Xu; David Vazquez; Krystian Mikolajczyk; Antonio Lopez edit   pdf
url  doi
openurl 
  Title (down) Hierarchical online domain adaptation of deformable part-based models Type Conference Article
  Year 2016 Publication IEEE International Conference on Robotics and Automation Abbreviated Journal  
  Volume Issue Pages 5536-5541  
  Keywords Domain Adaptation; Pedestrian Detection  
  Abstract We propose an online domain adaptation method for the deformable part-based model (DPM). The online domain adaptation is based on a two-level hierarchical adaptation tree, which consists of instance detectors in the leaf nodes and a category detector at the root node. Moreover, combined with a multiple object tracking procedure (MOT), our proposal neither requires target-domain annotated data nor revisiting the source-domain data for performing the source-to-target domain adaptation of the DPM. From a practical point of view this means that, given a source-domain DPM and new video for training on a new domain without object annotations, our procedure outputs a new DPM adapted to the domain represented by the video. As proof-of-concept we apply our proposal to the challenging task of pedestrian detection. In this case, each instance detector is an exemplar classifier trained online with only one pedestrian per frame. The pedestrian instances are collected by MOT and the hierarchical model is constructed dynamically according to the pedestrian trajectories. Our experimental results show that the adapted detector achieves the accuracy of recent supervised domain adaptation methods (i.e., requiring manually annotated targetdomain data), and improves the source detector more than 10 percentage points.  
  Address Stockholm; Sweden; May 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICRA  
  Notes ADAS; 600.085; 600.082; 600.076 Approved no  
  Call Number Admin @ si @ XVM2016 Serial 2728  
Permanent link to this record
 

 
Author Jiaolong Xu; Sebastian Ramos; David Vazquez; Antonio Lopez edit   pdf
doi  openurl
  Title (down) Hierarchical Adaptive Structural SVM for Domain Adaptation Type Journal Article
  Year 2016 Publication International Journal of Computer Vision Abbreviated Journal IJCV  
  Volume 119 Issue 2 Pages 159-178  
  Keywords Domain Adaptation; Pedestrian Detection  
  Abstract A key topic in classification is the accuracy loss produced when the data distribution in the training (source) domain differs from that in the testing (target) domain. This is being recognized as a very relevant problem for many
computer vision tasks such as image classification, object detection, and object category recognition. In this paper, we present a novel domain adaptation method that leverages multiple target domains (or sub-domains) in a hierarchical adaptation tree. The core idea is to exploit the commonalities and differences of the jointly considered target domains.
Given the relevance of structural SVM (SSVM) classifiers, we apply our idea to the adaptive SSVM (A-SSVM), which only requires the target domain samples together with the existing source-domain classifier for performing the desired adaptation. Altogether, we term our proposal as hierarchical A-SSVM (HA-SSVM).
As proof of concept we use HA-SSVM for pedestrian detection, object category recognition and face recognition. In the former we apply HA-SSVM to the deformable partbased model (DPM) while in the rest HA-SSVM is applied to multi-category classifiers. We will show how HA-SSVM is effective in increasing the detection/recognition accuracy with respect to adaptation strategies that ignore the structure of the target data. Since, the sub-domains of the target data are not always known a priori, we shown how HA-SSVM can incorporate sub-domain discovery for object category recognition.
 
  Address  
  Corporate Author Thesis  
  Publisher Springer US Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0920-5691 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.085; 600.082; 600.076 Approved no  
  Call Number Admin @ si @ XRV2016 Serial 2669  
Permanent link to this record
 

 
Author Juan Ramon Terven Salinas; Bogdan Raducanu; Maria Elena Meza-de-Luna; Joaquin Salas edit   pdf
doi  openurl
  Title (down) Head-gestures mirroring detection in dyadic social linteractions with computer vision-based wearable devices Type Journal Article
  Year 2016 Publication Neurocomputing Abbreviated Journal NEUCOM  
  Volume 175 Issue B Pages 866–876  
  Keywords Head gestures recognition; Mirroring detection; Dyadic social interaction analysis; Wearable devices  
  Abstract During face-to-face human interaction, nonverbal communication plays a fundamental role. A relevant aspect that takes part during social interactions is represented by mirroring, in which a person tends to mimic the non-verbal behavior (head and body gestures, vocal prosody, etc.) of the counterpart. In this paper, we introduce a computer vision-based system to detect mirroring in dyadic social interactions with the use of a wearable platform. In our context, mirroring is inferred as simultaneous head noddings displayed by the interlocutors. Our approach consists of the following steps: (1) facial features extraction; (2) facial features stabilization; (3) head nodding recognition; and (4) mirroring detection. Our system achieves a mirroring detection accuracy of 72% on a custom mirroring dataset.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.072; 600.068; Approved no  
  Call Number Admin @ si @ TRM2016 Serial 2721  
Permanent link to this record
 

 
Author Juan Ignacio Toledo; Sebastian Sudholt; Alicia Fornes; Jordi Cucurull; A. Fink; Josep Llados edit   pdf
url  isbn
openurl 
  Title (down) Handwritten Word Image Categorization with Convolutional Neural Networks and Spatial Pyramid Pooling Type Conference Article
  Year 2016 Publication Joint IAPR International Workshops on Statistical Techniques in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR) Abbreviated Journal  
  Volume 10029 Issue Pages 543-552  
  Keywords Document image analysis; Word image categorization; Convolutional neural networks; Named entity detection  
  Abstract The extraction of relevant information from historical document collections is one of the key steps in order to make these documents available for access and searches. The usual approach combines transcription and grammars in order to extract semantically meaningful entities. In this paper, we describe a new method to obtain word categories directly from non-preprocessed handwritten word images. The method can be used to directly extract information, being an alternative to the transcription. Thus it can be used as a first step in any kind of syntactical analysis. The approach is based on Convolutional Neural Networks with a Spatial Pyramid Pooling layer to deal with the different shapes of the input images. We performed the experiments on a historical marriage record dataset, obtaining promising results.  
  Address Merida; Mexico; December 2016  
  Corporate Author Thesis  
  Publisher Springer International Publishing Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-319-49054-0 Medium  
  Area Expedition Conference S+SSPR  
  Notes DAG; 600.097; 602.006 Approved no  
  Call Number Admin @ si @ TSF2016 Serial 2877  
Permanent link to this record
 

 
Author Sergio Escalera; Jordi Gonzalez; Xavier Baro; Jamie Shotton edit  doi
openurl 
  Title (down) Guest Editor Introduction to the Special Issue on Multimodal Human Pose Recovery and Behavior Analysis Type Journal Article
  Year 2016 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume 28 Issue Pages 1489 - 1491  
  Keywords  
  Abstract The sixteen papers in this special section focus on human pose recovery and behavior analysis (HuPBA). This is one of the most challenging topics in computer vision, pattern analysis, and machine learning. It is of critical importance for application areas that include gaming, computer interaction, human robot interaction, security, commerce, assistive technologies and rehabilitation, sports, sign language recognition, and driver assistance technology, to mention just a few. In essence, HuPBA requires dealing with the articulated nature of the human body, changes in appearance due to clothing, and the inherent problems of clutter scenes, such as background artifacts, occlusions, and illumination changes. These papers represent the most recent research in this field, including new methods considering still images, image sequences, depth data, stereo vision, 3D vision, audio, and IMUs, among others.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA; ISE;MV; Approved no  
  Call Number Admin @ si @ Serial 2851  
Permanent link to this record
 

 
Author Victor Campmany; Sergio Silva; Juan Carlos Moure; Toni Espinosa; David Vazquez; Antonio Lopez edit   pdf
openurl 
  Title (down) GPU-based pedestrian detection for autonomous driving Type Conference Article
  Year 2016 Publication GPU Technology Conference Abbreviated Journal  
  Volume Issue Pages  
  Keywords Pedestrian Detection; GPU  
  Abstract Pedestrian detection for autonomous driving is one of the hardest tasks within computer vision, and involves huge computational costs. Obtaining acceptable real-time performance, measured in frames per second (fps), for the most advanced algorithms is nowadays a hard challenge. Taking the work in [1] as our baseline, we propose a CUDA implementation of a pedestrian detection system that includes LBP and HOG as feature descriptors and SVM and Random forest as classifiers. We introduce significant algorithmic adjustments and optimizations to adapt the problem to the NVIDIA GPU architecture. The aim is to deploy a real-time system providing reliable results.  
  Address Silicon Valley; San Francisco; USA; April 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference GTC  
  Notes ADAS; 600.085; 600.082; 600.076 Approved no  
  Call Number ADAS @ adas @ CSM2016 Serial 2737  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: