Jaime Moreno, & Xavier Otazu. (2011). Image coder based on Hilbert scanning of embedded quadTrees. In Data Compression Conference (p. 470).
Abstract: In this work we present an effective and computationally simple algorithm for image compression based on Hilbert Scanning of Embedded quadTrees (Hi-SET). It allows to represent an image as an embedded bitstream along a fractal function. Embedding is an important feature of modern image compression algorithms, in this way Salomon in [1, pg. 614] cite that another feature and perhaps a unique one is the fact of achieving the best quality for the number of bits input by the decoder at any point during the decoding. Hi-SET possesses also this latter feature. Furthermore, the coder is based on a quadtree partition strategy, that applied to image transformation structures such as discrete cosine or wavelet transform allows to obtain an energy clustering both in frequency and space. The coding algorithm is composed of three general steps, using just a list of significant pixels.
|
|
Jaime Moreno, & Xavier Otazu. (2011). Image compression algorithm based on Hilbert scanning of embedded quadTrees: an introduction of the Hi-SET coder. In IEEE International Conference on Multimedia and Expo (pp. 1–6).
Abstract: In this work we present an effective and computationally simple algorithm for image compression based on Hilbert Scanning of Embedded quadTrees (Hi-SET). It allows to represent an image as an embedded bitstream along a fractal function. Embedding is an important feature of modern image compression algorithms, in this way Salomon in [1, pg. 614] cite that another feature and perhaps a unique one is the fact of achieving the best quality for the number of bits input by the decoder at any point during the decoding. Hi-SET possesses also this latter feature. Furthermore, the coder is based on a quadtree partition strategy, that applied to image transformation structures such as discrete cosine or wavelet transform allows to obtain an energy clustering both in frequency and space. The coding algorithm is composed of three general steps, using just a list of significant pixels. The implementation of the proposed coder is developed for gray-scale and color image compression. Hi-SET compressed images are, on average, 6.20dB better than the ones obtained by other compression techniques based on the Hilbert scanning. Moreover, Hi-SET improves the image quality in 1.39dB and 1.00dB in gray-scale and color compression, respectively, when compared with JPEG2000 coder.
|
|
Yasuko Sugito, Javier Vazquez, Trevor Canham, & Marcelo Bertalmio. (2022). Image quality evaluation in professional HDR/WCG production questions the need for HDR metrics. TIP - IEEE Transactions on Image Processing, 31, 5163–5177.
Abstract: In the quality evaluation of high dynamic range and wide color gamut (HDR/WCG) images, a number of works have concluded that native HDR metrics, such as HDR visual difference predictor (HDR-VDP), HDR video quality metric (HDR-VQM), or convolutional neural network (CNN)-based visibility metrics for HDR content, provide the best results. These metrics consider only the luminance component, but several color difference metrics have been specifically developed for, and validated with, HDR/WCG images. In this paper, we perform subjective evaluation experiments in a professional HDR/WCG production setting, under a real use case scenario. The results are quite relevant in that they show, firstly, that the performance of HDR metrics is worse than that of a classic, simple standard dynamic range (SDR) metric applied directly to the HDR content; and secondly, that the chrominance metrics specifically developed for HDR/WCG imaging have poor correlation with observer scores and are also outperformed by an SDR metric. Based on these findings, we show how a very simple framework for creating color HDR metrics, that uses only luminance SDR metrics, transfer functions, and classic color spaces, is able to consistently outperform, by a considerable margin, state-of-the-art HDR metrics on a varied set of HDR content, for both perceptual quantization (PQ) and Hybrid Log-Gamma (HLG) encoding, luminance and chroma distortions, and on different color spaces of common use.
Keywords: Measurement; Image color analysis; Image coding; Production; Dynamic range; Brightness; Extraterrestrial measurements
|
|
Susana Alvarez, Xavier Otazu, & Maria Vanrell. (2005). Image Segmentation Based on Inter-Feature Distance Maps. In Frontiers in Artificial Intelligence and Applications, IOS Press, 131: 75–82.
|
|
Eduard Vazquez, Joost Van de Weijer, & Ramon Baldrich. (2008). Image Segmentation in the Presence of Shadows and Highligts. In 10th European Conference on Computer Vision (Vol. 5305, 1–14). LNCS.
|
|
Abel Gonzalez-Garcia, Joost Van de Weijer, & Yoshua Bengio. (2018). Image-to-image translation for cross-domain disentanglement. In 32nd Annual Conference on Neural Information Processing Systems.
|
|
Fei Yang, Yongmei Cheng, Joost Van de Weijer, & Mikhail Mozerov. (2020). Improved Discrete Optical Flow Estimation With Triple Image Matching Cost. ACCESS - IEEE Access, 8, 17093–17102.
Abstract: Approaches that use more than two consecutive video frames in the optical flow estimation have a long research history. However, almost all such methods utilize extra information for a pre-processing flow prediction or for a post-processing flow correction and filtering. In contrast, this paper differs from previously developed techniques. We propose a new algorithm for the likelihood function calculation (alternatively the matching cost volume) that is used in the maximum a posteriori estimation. We exploit the fact that in general, optical flow is locally constant in the sense of time and the likelihood function depends on both the previous and the future frame. Implementation of our idea increases the robustness of optical flow estimation. As a result, our method outperforms 9% over the DCFlow technique, which we use as prototype for our CNN based computation architecture, on the most challenging MPI-Sintel dataset for the non-occluded mask metric. Furthermore, our approach considerably increases the accuracy of the flow estimation for the matching cost processing, consequently outperforming the original DCFlow algorithm results up to 50% in occluded regions and up to 9% in non-occluded regions on the MPI-Sintel dataset. The experimental section shows that the proposed method achieves state-of-the-arts results especially on the MPI-Sintel dataset.
|
|
Mikhail Mozerov, & Joost Van de Weijer. (2017). Improved Recursive Geodesic Distance Computation for Edge Preserving Filter. TIP - IEEE Transactions on Image Processing, 26(8), 3696–3706.
Abstract: All known recursive filters based on the geodesic distance affinity are realized by two 1D recursions applied in two orthogonal directions of the image plane. The 2D extension of the filter is not valid and has theoretically drawbacks, which lead to known artifacts. In this paper, a maximum influence propagation method is proposed to approximate the 2D extension for the
geodesic distance-based recursive filter. The method allows to partially overcome the drawbacks of the 1D recursion approach. We show that our improved recursion better approximates the true geodesic distance filter, and the application of this improved filter for image denoising outperforms the existing recursive implementation of the geodesic distance. As an application,
we consider a geodesic distance-based filter for image denoising.
Experimental evaluation of our denoising method demonstrates comparable and for several test images better results, than stateof-the-art approaches, while our algorithm is considerably fasterwith computational complexity O(8P).
Keywords: Geodesic distance filter; color image filtering; image enhancement
|
|
Arjan Gijsenij, Theo Gevers, & Joost Van de Weijer. (2012). Improving Color Constancy by Photometric Edge Weighting. TPAMI - IEEE Transaction on Pattern Analysis and Machine Intelligence, 34(5), 918–929.
Abstract: : Edge-based color constancy methods make use of image derivatives to estimate the illuminant. However, different edge types exist in real-world images such as material, shadow and highlight edges. These different edge types may have a distinctive influence on the performance of the illuminant estimation. Therefore, in this paper, an extensive analysis is provided of different edge types on the performance of edge-based color constancy methods. First, an edge-based taxonomy is presented classifying edge types based on their photometric properties (e.g. material, shadow-geometry and highlights). Then, a performance evaluation of edge-based color constancy is provided using these different edge types. From this performance evaluation it is derived that specular and shadow edge types are more valuable than material edges for the estimation of the illuminant. To this end, the (iterative) weighted Grey-Edge algorithm is proposed in which these edge types are more emphasized for the estimation of the illuminant. Images that are recorded under controlled circumstances demonstrate that the proposed iterative weighted Grey-Edge algorithm based on highlights reduces the median angular error with approximately $25\%$. In an uncontrolled environment, improvements in angular error up to $11\%$ are obtained with respect to regular edge-based color constancy.
|
|
Albin Soutif, Antonio Carta, & Joost Van de Weijer. (2023). Improving Online Continual Learning Performance and Stability with Temporal Ensembles. In 2nd Conference on Lifelong Learning Agents.
Abstract: Neural networks are very effective when trained on large datasets for a large number of iterations. However, when they are trained on non-stationary streams of data and in an online fashion, their performance is reduced (1) by the online setup, which limits the availability of data, (2) due to catastrophic forgetting because of the non-stationary nature of the data. Furthermore, several recent works (Caccia et al., 2022; Lange et al., 2023) arXiv:2205.13452 showed that replay methods used in continual learning suffer from the stability gap, encountered when evaluating the model continually (rather than only on task boundaries). In this article, we study the effect of model ensembling as a way to improve performance and stability in online continual learning. We notice that naively ensembling models coming from a variety of training tasks increases the performance in online continual learning considerably. Starting from this observation, and drawing inspirations from semi-supervised learning ensembling methods, we use a lightweight temporal ensemble that computes the exponential moving average of the weights (EMA) at test time, and show that it can drastically increase the performance and stability when used in combination with several methods from the literature.
|
|
O. Fors, J. Nuñez, Xavier Otazu, A. Prades, & Robert D. Cardinal. (2010). Improving the Ability of Image Sensors to Detect Faint Stars and Moving Objects Using Image Deconvolution Techniques. SENS - Sensors, 10(3), 1743–1752.
Abstract: Abstract: In this paper we show how the techniques of image deconvolution can increase the ability of image sensors as, for example, CCD imagers, to detect faint stars or faint orbital objects (small satellites and space debris). In the case of faint stars, we show that this benefit is equivalent to double the quantum efficiency of the used image sensor or to increase the effective telescope aperture by more than 30% without decreasing the astrometric precision or introducing artificial bias. In the case of orbital objects, the deconvolution technique can double the signal-to-noise ratio of the image, which helps to discover and control dangerous objects as space debris or lost satellites. The benefits obtained using CCD detectors can be extrapolated to any kind of image sensors.
Keywords: image processing; image deconvolution; faint stars; space debris; wavelet transform
|
|
Javier Vazquez, Graham D. Finlayson, & Luis Herranz. (2024). Improving the perception of low-light enhanced images. Optics Express, 32(4), 5174–5190.
Abstract: Improving images captured under low-light conditions has become an important topic in computational color imaging, as it has a wide range of applications. Most current methods are either based on handcrafted features or on end-to-end training of deep neural networks that mostly focus on minimizing some distortion metric —such as PSNR or SSIM— on a set of training images. However, the minimization of distortion metrics does not mean that the results are optimal in terms of perception (i.e. perceptual quality). As an example, the perception-distortion trade-off states that, close to the optimal results, improving distortion results in worsening perception. This means that current low-light image enhancement methods —that focus on distortion minimization— cannot be optimal in the sense of obtaining a good image in terms of perception errors. In this paper, we propose a post-processing approach in which, given the original low-light image and the result of a specific method, we are able to obtain a result that resembles as much as possible that of the original method, but, at the same time, giving an improvement in the perception of the final image. More in detail, our method follows the hypothesis that in order to minimally modify the perception of an input image, any modification should be a combination of a local change in the shading across a scene and a global change in illumination color. We demonstrate the ability of our method quantitatively using perceptual blind image metrics such as BRISQUE, NIQE, or UNIQUE, and through user preference tests.
|
|
Kai Wang, Xialei Liu, Andrew Bagdanov, Luis Herranz, Shangling Jui, & Joost Van de Weijer. (2022). Incremental Meta-Learning via Episodic Replay Distillation for Few-Shot Image Recognition. In CVPR 2022 Workshop on Continual Learning (CLVision, 3rd Edition) (pp. 3728–3738).
Abstract: In this paper we consider the problem of incremental meta-learning in which classes are presented incrementally in discrete tasks. We propose Episodic Replay Distillation (ERD), that mixes classes from the current task with exemplars from previous tasks when sampling episodes for meta-learning. To allow the training to benefit from a large as possible variety of classes, which leads to more gener-
alizable feature representations, we propose the cross-task meta loss. Furthermore, we propose episodic replay distillation that also exploits exemplars for improved knowledge distillation. Experiments on four datasets demonstrate that ERD surpasses the state-of-the-art. In particular, on the more challenging one-shot, long task sequence scenarios, we reduce the gap between Incremental Meta-Learning and
the joint-training upper bound from 3.5% / 10.1% / 13.4% / 11.7% with the current state-of-the-art to 2.6% / 2.9% / 5.0% / 0.2% with our method on Tiered-ImageNet / Mini-ImageNet / CIFAR100 / CUB, respectively.
Keywords: Training; Computer vision; Image recognition; Upper bound; Conferences; Pattern recognition; Task analysis
|
|
Maria Vanrell, Ramon Baldrich, Anna Salvatella, Robert Benavente, & Francesc Tous. (2004). Induction operators for a computational colour-texture representation. Computer Vision and Image Understanding, 94(1–3):92–114, ISSN: 1077–3142 (IF: 0.651).
|
|
Danna Xue, Javier Vazquez, Luis Herranz, Yang Zhang, & Michael S Brown. (2023). Integrating High-Level Features for Consistent Palette-based Multi-image Recoloring. CGF - Computer Graphics Forum, .
Abstract: Achieving visually consistent colors across multiple images is important when images are used in photo albums, websites, and brochures. Unfortunately, only a handful of methods address multi-image color consistency compared to one-to-one color transfer techniques. Furthermore, existing methods do not incorporate high-level features that can assist graphic designers in their work. To address these limitations, we introduce a framework that builds upon a previous palette-based color consistency method and incorporates three high-level features: white balance, saliency, and color naming. We show how these features overcome the limitations of the prior multi-consistency workflow and showcase the user-friendly nature of our framework.
|
|
Jordi Roca, A.Owen, G.Jordan, Y.Ling, C. Alejandro Parraga, & A.Hurlbert. (2011). Inter-individual Variations in Color Naming and the Structure of 3D Color Space. In Journal of Vision (Vol. 12, 166).
Abstract: 36.307
Many everyday behavioural uses of color vision depend on color naming ability, which is neither measured nor predicted by most standardized tests of color vision, for either normal or anomalous color vision. Here we demonstrate a new method to quantify color naming ability by deriving a compact computational description of individual 3D color spaces. Methods: Individual observers underwent standardized color vision diagnostic tests (including anomaloscope testing) and a series of custom-made color naming tasks using 500 distinct color samples, either CRT stimuli (“light”-based) or Munsell chips (“surface”-based), with both forced- and free-choice color naming paradigms. For each subject, we defined his/her color solid as the set of 3D convex hulls computed for each basic color category from the relevant collection of categorised points in perceptually uniform CIELAB space. From the parameters of the convex hulls, we derived several indices to characterise the 3D structure of the color solid and its inter-individual variations. Using a reference group of 25 normal trichromats (NT), we defined the degree of normality for the shape, location and overlap of each color region, and the extent of “light”-“surface” agreement. Results: Certain features of color perception emerge from analysis of the average NT color solid, e.g.: (1) the white category is slightly shifted towards blue; and (2) the variability in category border location across NT subjects is asymmetric across color space, with least variability in the blue/green region. Comparisons between individual and average NT indices reveal specific naming “deficits”, e.g.: (1) Category volumes for white, green, brown and grey are expanded for anomalous trichromats and dichromats; and (2) the focal structure of color space is disrupted more in protanopia than other forms of anomalous color vision. The indices both capture the structure of subjective color spaces and allow us to quantify inter-individual differences in color naming ability.
|
|
Joost Van de Weijer, Fahad Shahbaz Khan, & Marc Masana. (2013). Interactive Visual and Semantic Image Retrieval. In Angel Sappa, & Jordi Vitria (Eds.), Multimodal Interaction in Image and Video Applications (Vol. 48, pp. 31–35). Springer Berlin Heidelberg.
Abstract: One direct consequence of recent advances in digital visual data generation and the direct availability of this information through the World-Wide Web, is a urgent demand for efficient image retrieval systems. The objective of image retrieval is to allow users to efficiently browse through this abundance of images. Due to the non-expert nature of the majority of the internet users, such systems should be user friendly, and therefore avoid complex user interfaces. In this chapter we investigate how high-level information provided by recently developed object recognition techniques can improve interactive image retrieval. Wel apply a bagof- word based image representation method to automatically classify images in a number of categories. These additional labels are then applied to improve the image retrieval system. Next to these high-level semantic labels, we also apply a low-level image description to describe the composition and color scheme of the scene. Both descriptions are incorporated in a user feedback image retrieval setting. The main objective is to show that automatic labeling of images with semantic labels can improve image retrieval results.
|
|
Sagnik Das, Hassan Ahmed Sial, Ke Ma, Ramon Baldrich, Maria Vanrell, & Dimitris Samaras. (2020). Intrinsic Decomposition of Document Images In-the-Wild. In 31st British Machine Vision Conference.
Abstract: Automatic document content processing is affected by artifacts caused by the shape
of the paper, non-uniform and diverse color of lighting conditions. Fully-supervised
methods on real data are impossible due to the large amount of data needed. Hence, the
current state of the art deep learning models are trained on fully or partially synthetic images. However, document shadow or shading removal results still suffer because: (a) prior methods rely on uniformity of local color statistics, which limit their application on real-scenarios with complex document shapes and textures and; (b) synthetic or hybrid datasets with non-realistic, simulated lighting conditions are used to train the models. In this paper we tackle these problems with our two main contributions. First, a physically constrained learning-based method that directly estimates document reflectance based on intrinsic image formation which generalizes to challenging illumination conditions. Second, a new dataset that clearly improves previous synthetic ones, by adding a large range of realistic shading and diverse multi-illuminant conditions, uniquely customized to deal with documents in-the-wild. The proposed architecture works in two steps. First, a white balancing module neutralizes the color of the illumination on the input image. Based on the proposed multi-illuminant dataset we achieve a good white-balancing in really difficult conditions. Second, the shading separation module accurately disentangles the shading and paper material in a self-supervised manner where only the synthetic texture is used as a weak training signal (obviating the need for very costly ground truth with disentangled versions of shading and reflectance). The proposed approach leads to significant generalization of document reflectance estimation in real scenes with challenging illumination. We extensively evaluate on the real benchmark datasets available for intrinsic image decomposition and document shadow removal tasks. Our reflectance estimation scheme, when used as a pre-processing step of an OCR pipeline, shows a 21% improvement of character error rate (CER), thus, proving the practical applicability. The data and code will be available at: https://github.com/cvlab-stonybrook/DocIIW.
|
|