toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Yaxing Wang; Hector Laria Mantecon; Joost Van de Weijer; Laura Lopez-Fuentes; Bogdan Raducanu edit   pdf
doi  openurl
  Title (up) TransferI2I: Transfer Learning for Image-to-Image Translation from Small Datasets Type Conference Article
  Year 2021 Publication 19th IEEE International Conference on Computer Vision Abbreviated Journal  
  Volume Issue Pages 13990-13999  
  Keywords  
  Abstract Image-to-image (I2I) translation has matured in recent years and is able to generate high-quality realistic images. However, despite current success, it still faces important challenges when applied to small domains. Existing methods use transfer learning for I2I translation, but they still require the learning of millions of parameters from scratch. This drawback severely limits its application on small domains. In this paper, we propose a new transfer learning for I2I translation (TransferI2I). We decouple our learning process into the image generation step and the I2I translation step. In the first step we propose two novel techniques: source-target initialization and self-initialization of the adaptor layer. The former finetunes the pretrained generative model (e.g., StyleGAN) on source and target data. The latter allows to initialize all non-pretrained network parameters without the need of any data. These techniques provide a better initialization for the I2I translation step. In addition, we introduce an auxiliary GAN that further facilitates the training of deep I2I systems even from small datasets. In extensive experiments on three datasets, (Animal faces, Birds, and Foods), we show that we outperform existing methods and that mFID improves on several datasets with over 25 points.  
  Address Virtual; October 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICCV  
  Notes LAMP; 600.147; 602.200; 600.120 Approved no  
  Call Number Admin @ si @ WLW2021 Serial 3604  
Permanent link to this record
 

 
Author Dorota Kaminska; Kadir Aktas; Davit Rizhinashvili; Danila Kuklyanov; Abdallah Hussein Sham; Sergio Escalera; Kamal Nasrollahi; Thomas B. Moeslund; Gholamreza Anbarjafari edit   pdf
url  openurl
  Title (up) Two-stage Recognition and Beyond for Compound Facial Emotion Recognition Type Journal Article
  Year 2021 Publication Electronics Abbreviated Journal ELEC  
  Volume 10 Issue 22 Pages 2847  
  Keywords compound emotion recognition; facial expression recognition; dominant and complementary emotion recognition; deep learning  
  Abstract Facial emotion recognition is an inherently complex problem due to individual diversity in facial features and racial and cultural differences. Moreover, facial expressions typically reflect the mixture of people’s emotional statuses, which can be expressed using compound emotions. Compound facial emotion recognition makes the problem even more difficult because the discrimination between dominant and complementary emotions is usually weak. We have created a database that includes 31,250 facial images with different emotions of 115 subjects whose gender distribution is almost uniform to address compound emotion recognition. In addition, we have organized a competition based on the proposed dataset, held at FG workshop 2020. This paper analyzes the winner’s approach—a two-stage recognition method (1st stage, coarse recognition; 2nd stage, fine recognition), which enhances the classification of symmetrical emotion labels.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; no proj Approved no  
  Call Number Admin @ si @ KAR2021 Serial 3642  
Permanent link to this record
 

 
Author Jialuo Chen; Mohamed Ali Souibgui; Alicia Fornes; Beata Megyesi edit   pdf
openurl 
  Title (up) Unsupervised Alphabet Matching in Historical Encrypted Manuscript Images Type Conference Article
  Year 2021 Publication 4th International Conference on Historical Cryptology Abbreviated Journal  
  Volume Issue Pages 34-37  
  Keywords  
  Abstract Historical ciphers contain a wide range ofsymbols from various symbol sets. Iden-tifying the cipher alphabet is a prerequi-site before decryption can take place andis a time-consuming process. In this workwe explore the use of image processing foridentifying the underlying alphabet in ci-pher images, and to compare alphabets be-tween ciphers. The experiments show thatciphers with similar alphabets can be suc-cessfully discovered through clustering.  
  Address Virtual; September 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference HistoCrypt  
  Notes DAG; 602.230; 600.140; 600.121 Approved no  
  Call Number Admin @ si @ CSF2021 Serial 3617  
Permanent link to this record
 

 
Author Albert Rial-Farras; Meysam Madadi; Sergio Escalera edit   pdf
url  doi
openurl 
  Title (up) UV-based reconstruction of 3D garments from a single RGB image Type Conference Article
  Year 2021 Publication 16th IEEE International Conference on Automatic Face and Gesture Recognition Abbreviated Journal  
  Volume Issue Pages 1-8  
  Keywords  
  Abstract Garments are highly detailed and dynamic objects made up of particles that interact with each other and with other objects, making the task of 2D to 3D garment reconstruction extremely challenging. Therefore, having a lightweight 3D representation capable of modelling fine details is of great importance. This work presents a deep learning framework based on Generative Adversarial Networks (GANs) to reconstruct 3D garment models from a single RGB image. It has the peculiarity of using UV maps to represent 3D data, a lightweight representation capable of dealing with high-resolution details and wrinkles. With this model and kind of 3D representation, we achieve state-of-the-art results on the CLOTH3D++ dataset, generating good quality and realistic garment reconstructions regardless of the garment topology and shape, human pose, occlusions and lightning.  
  Address Virtual; December 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference FG  
  Notes HUPBA; no proj Approved no  
  Call Number Admin @ si @ RME2021 Serial 3639  
Permanent link to this record
 

 
Author Carola Figueroa Flores edit  isbn
openurl 
  Title (up) Visual Saliency for Object Recognition, and Object Recognition for Visual Saliency Type Book Whole
  Year 2021 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords computer vision; visual saliency; fine-grained object recognition; convolutional neural networks; images classification  
  Abstract For humans, the recognition of objects is an almost instantaneous, precise and
extremely adaptable process. Furthermore, we have the innate capability to learn
new object classes from only few examples. The human brain lowers the complexity
of the incoming data by filtering out part of the information and only processing
those things that capture our attention. This, mixed with our biological predisposition to respond to certain shapes or colors, allows us to recognize in a simple
glance the most important or salient regions from an image. This mechanism can
be observed by analyzing on which parts of images subjects place attention; where
they fix their eyes when an image is shown to them. The most accurate way to
record this behavior is to track eye movements while displaying images.
Computational saliency estimation aims to identify to what extent regions or
objects stand out with respect to their surroundings to human observers. Saliency
maps can be used in a wide range of applications including object detection, image
and video compression, and visual tracking. The majority of research in the field has
focused on automatically estimating saliency maps given an input image. Instead, in
this thesis, we set out to incorporate saliency maps in an object recognition pipeline:
we want to investigate whether saliency maps can improve object recognition
results.
In this thesis, we identify several problems related to visual saliency estimation.
First, to what extent the estimation of saliency can be exploited to improve the
training of an object recognition model when scarce training data is available. To
solve this problem, we design an image classification network that incorporates
saliency information as input. This network processes the saliency map through a
dedicated network branch and uses the resulting characteristics to modulate the
standard bottom-up visual characteristics of the original image input. We will refer to this technique as saliency-modulated image classification (SMIC). In extensive
experiments on standard benchmark datasets for fine-grained object recognition,
we show that our proposed architecture can significantly improve performance,
especially on dataset with scarce training data.
Next, we address the main drawback of the above pipeline: SMIC requires an
explicit saliency algorithm that must be trained on a saliency dataset. To solve this,
we implement a hallucination mechanism that allows us to incorporate the saliency
estimation branch in an end-to-end trained neural network architecture that only
needs the RGB image as an input. A side-effect of this architecture is the estimation
of saliency maps. In experiments, we show that this architecture can obtain similar
results on object recognition as SMIC but without the requirement of ground truth
saliency maps to train the system.
Finally, we evaluated the accuracy of the saliency maps that occur as a sideeffect of object recognition. For this purpose, we use a set of benchmark datasets
for saliency evaluation based on eye-tracking experiments. Surprisingly, the estimated saliency maps are very similar to the maps that are computed from human
eye-tracking experiments. Our results show that these saliency maps can obtain
competitive results on benchmark saliency maps. On one synthetic saliency dataset
this method even obtains the state-of-the-art without the need of ever having seen
an actual saliency image for training.
 
  Address March 2021  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Joost Van de Weijer;Bogdan Raducanu  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-122714-4-7 Medium  
  Area Expedition Conference  
  Notes LAMP; 600.120 Approved no  
  Call Number Admin @ si @ Fig2021 Serial 3600  
Permanent link to this record
 

 
Author Idoia Ruiz; Lorenzo Porzi; Samuel Rota Bulo; Peter Kontschieder; Joan Serrat edit   pdf
openurl 
  Title (up) Weakly Supervised Multi-Object Tracking and Segmentation Type Conference Article
  Year 2021 Publication IEEE Winter Conference on Applications of Computer Vision Workshops Abbreviated Journal  
  Volume Issue Pages 125-133  
  Keywords  
  Abstract We introduce the problem of weakly supervised MultiObject Tracking and Segmentation, i.e. joint weakly supervised instance segmentation and multi-object tracking, in which we do not provide any kind of mask annotation.
To address it, we design a novel synergistic training strategy by taking advantage of multi-task learning, i.e. classification and tracking tasks guide the training of the unsupervised instance segmentation. For that purpose, we extract weak foreground localization information, provided by
Grad-CAM heatmaps, to generate a partial ground truth to learn from. Additionally, RGB image level information is employed to refine the mask prediction at the edges of the
objects. We evaluate our method on KITTI MOTS, the most representative benchmark for this task, reducing the performance gap on the MOTSP metric between the fully supervised and weakly supervised approach to just 12% and 12.7 % for cars and pedestrians, respectively.
 
  Address Virtual; January 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WACVW  
  Notes ADAS; 600.118; 600.124 Approved no  
  Call Number Admin @ si @ RPR2021 Serial 3548  
Permanent link to this record
 

 
Author Javad Zolfaghari Bengar; Bogdan Raducanu; Joost Van de Weijer edit  url
openurl 
  Title (up) When Deep Learners Change Their Mind: Learning Dynamics for Active Learning Type Conference Article
  Year 2021 Publication 19th International Conference on Computer Analysis of Images and Patterns Abbreviated Journal  
  Volume 13052 Issue 1 Pages 403-413  
  Keywords  
  Abstract Active learning aims to select samples to be annotated that yield the largest performance improvement for the learning algorithm. Many methods approach this problem by measuring the informativeness of samples and do this based on the certainty of the network predictions for samples. However, it is well-known that neural networks are overly confident about their prediction and are therefore an untrustworthy source to assess sample informativeness. In this paper, we propose a new informativeness-based active learning method. Our measure is derived from the learning dynamics of a neural network. More precisely we track the label assignment of the unlabeled data pool during the training of the algorithm. We capture the learning dynamics with a metric called label-dispersion, which is low when the network consistently assigns the same label to the sample during the training of the network and high when the assigned label changes frequently. We show that label-dispersion is a promising predictor of the uncertainty of the network, and show on two benchmark datasets that an active learning algorithm based on label-dispersion obtains excellent results.  
  Address September 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CAIP  
  Notes LAMP; Approved no  
  Call Number Admin @ si @ ZRV2021 Serial 3673  
Permanent link to this record
 

 
Author Zhengying Liu; Adrien Pavao; Zhen Xu; Sergio Escalera; Fabio Ferreira; Isabelle Guyon; Sirui Hong; Frank Hutter; Rongrong Ji; Julio C. S. Jacques Junior; Ge Li; Marius Lindauer; Zhipeng Luo; Meysam Madadi; Thomas Nierhoff; Kangning Niu; Chunguang Pan; Danny Stoll; Sebastien Treguer; Jin Wang; Peng Wang; Chenglin Wu; Youcheng Xiong; Arber Zela; Yang Zhang edit  url
doi  openurl
  Title (up) Winning Solutions and Post-Challenge Analyses of the ChaLearn AutoDL Challenge 2019 Type Journal Article
  Year 2021 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume 43 Issue 9 Pages 3108 - 3125  
  Keywords  
  Abstract This paper reports the results and post-challenge analyses of ChaLearn's AutoDL challenge series, which helped sorting out a profusion of AutoML solutions for Deep Learning (DL) that had been introduced in a variety of settings, but lacked fair comparisons. All input data modalities (time series, images, videos, text, tabular) were formatted as tensors and all tasks were multi-label classification problems. Code submissions were executed on hidden tasks, with limited time and computational resources, pushing solutions that get results quickly. In this setting, DL methods dominated, though popular Neural Architecture Search (NAS) was impractical. Solutions relied on fine-tuned pre-trained networks, with architectures matching data modality. Post-challenge tests did not reveal improvements beyond the imposed time limit. While no component is particularly original or novel, a high level modular organization emerged featuring a “meta-learner”, “data ingestor”, “model selector”, “model/learner”, and “evaluator”. This modularity enabled ablation studies, which revealed the importance of (off-platform) meta-learning, ensembling, and efficient data management. Experiments on heterogeneous module combinations further confirm the (local) optimality of the winning solutions. Our challenge legacy includes an ever-lasting benchmark (http://autodl.chalearn.org), the open-sourced code of the winners, and a free “AutoDL self-service.”  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; no proj Approved no  
  Call Number Admin @ si @ LPX2021 Serial 3587  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: