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Abstract— Garments are highly detailed and dynamic objects
made up of particles that interact with each other and with
other objects, making the task of 2D to 3D garment recon-
struction extremely challenging. Therefore, having a lightweight
3D representation capable of modelling fine details is of great
importance. This work presents a deep learning framework
based on Generative Adversarial Networks (GANs) to recon-
struct 3D garment models from a single RGB image. It has the
peculiarity of using UV maps to represent 3D data, a lightweight
representation capable of dealing with high-resolution details
and wrinkles. With this model and kind of 3D representation,
we achieve state-of-the-art results on the CLOTH3D++ dataset,
generating good quality and realistic garment reconstructions
regardless of the garment topology and shape, human pose,
occlusions and lightning.

I. INTRODUCTION

Inferring 3D shapes from a single viewpoint is an essential
human vision feature extremely difficult for computer vision
machines. For this reason, there has always been a great deal
of research devoted to building 3D reconstruction models
capable of inferring the 3D geometry and structure of objects
or scenes from a single or multiple 2D pictures. Tasks in
this field go from reconstructing objects like cars or chairs
to modelling entire cities. These models can be used for a
wide variety of applications such as 3D printing, simulation
of buildings in the civil engineering domain, or generation
of artificial objects, humans and scenes for videogames and
movies.

One field in which the research community and industry
have been working for years has been the study of human
dynamics. Accurately tracking, capturing, reconstructing and
animating the human body, face and garments in 3D are
critical tasks for human-computer interaction, gaming, spe-
cial effects and virtual reality. Despite the advances in the
field, most research has concentrated only on reconstructing
unclothed bodies and faces, but modelling and recovering
garments have remained notoriously tricky.

For this reason, our work pushes the research on the
specific domain of garments, learning clothing dynamics and
reconstructing clothed humans. This topic has many potential
applications and benefits: allow virtual try-on experiences
when buying clothes, reduce designers and animators work-
load when creating avatars for games and movies, etc.

First-generation methods that tried to recover the lost
dimension from just 2D images were concentrated on un-
derstanding and formalising, mathematically, the 3D to 2D
projection process [20], [27]. However, this kind of solutions

required multiple images captured with well-calibrated cam-
eras and accurately segmented, which in many cases is not
possible or practical.

Recent advances in deep learning algorithms, as well as
the increasing availability of large training datasets, have
resulted in a new generation of models that can recover
3D models from one or multiple RGB images without the
complex camera calibration process. In this project, we are
interested in these advantages, so we focus on developing a
solution of this second category, using and testing different
deep learning techniques. Specifically, we are interested in
UV maps compared to other 3D surface representations
such as meshes, point clouds or voxels, which are the ones
commonly used in other 3D deep learning models [11], [53],
[43], [49], [54], [28], [40], [41], [13], [33], [51], [52], [18],
[19]. UV maps allow us to use standard computer vision ar-
chitectures, usually intended for images and two-dimensional
inputs/outputs. In addition, and even more important, UV
maps are lightweight and capable of modelling fine details, a
feature necessary for modelling challenging dynamic systems
like garments.

In this work, we present a model based on Generative
Adversarial Networks (GANs) [17] that has the peculiarity
to use UV maps to represent 3D data. It is based on LGGAN
(Local Class-Specific and Global Image-Level Generative
Adversarial Networks) [48], used previously on semantic-
guided scene generation tasks like cross-view image trans-
lation and semantic image synthesis and characterised by
combining two levels of generation, global image-level and
local class-specific.

Our contributions are summarised below:
1) We adapt the LGGAN architecture to predict garment

UV map from the input image. We also introduce 3D
loss functions to improve the surface quality.

2) In addition, this work also studies the feasibility and
impact of using UV map representations for 3D recon-
struction tasks, demonstrating that it is an interesting
option that could be applied in many other 3D tasks.

3) As a result, in this work we propose a system that
can adequately learn garment dynamics and reconstruct
clothed humans from a single RGB image, using UV
maps to represent 3D data and achieving state-of-the-
art results in CLOTH3D++ [30] dataset.

II. RELATED WORK

In this section, we review the state-of-the-art on 3D object
reconstruction and more specifically the garment reconstruc-



tion field. We also focus on the 3D representations used in
these works and the differences between them.

The first works approached the problem from a geometric
perspective and tried to understand and formalise the 3D
projection process mathematically [20], [46], [9], [27]. Al-
though these solutions are very successful in some scenarios,
they are subject to several restrictions. They require a great
number of images from different viewpoints of the object and
this cannot be non-lambertian (e.g. reflective or transparent)
nor textureless. They also require the objects to be accurately
segmented from the background and well-calibrated cameras,
which is not suitable in many applications.

All these restrictions lead the researchers to draw on
learning-based approaches, that consider single or multiple
images and rely on the shape prior knowledge learnt from
previously seen objects. With the success of deep learning
architectures, and more importantly, the release of large-scale
3D datasets, learning-based approaches have achieved great
progress and very promising results.

Unlike 2D images, which are always represented by
regular grids of pixels, 3D shapes have various possible
representations, being voxels, point clouds and meshes the
most common. This has led to 3D reconstruction models
that are very different from each other, as their architectures
largely depend on the representation used.

a) Voxel-based representations: Voxel-based were
among the first representations used in deep learning tech-
niques to reconstruct 3D objects. One voxel is basically a
3D base cubical unit that, together with other voxels, form
a 3D object inside a regular grid in the 3D space. It can be
seen as a 3D extension of the concept of pixel. Due to this
2D analogy with pixels, a data type used in computer vision
for decades, in the last few years many different approaches
dealing with voxels have appeared [11], [53], [49], [54]. A
problem with this representation is that the results may lack
detail since the resolution is limited by the amount and size
of voxels, so to have high quality results a high memory
consumption is required.

b) Point-based: 3D point clouds are another alternative
to represent 3D objects that have been widely used in several
works [13], [33]. A point cloud is a set of unstructured
data points in a three-dimensional coordinate system that
approximates the geometry of 3D objects. Unlike voxels, this
representation is simple and efficient, but the connectivity
absence among points results in an ambiguity about surface
information. Moreover, the lack of structure and order they
present makes networks using this type of representation hard
to train.

c) Mesh-based: Meshes are one of the most popular
representations used for modelling 3D objects. It is a geo-
metric data structure that allows the representation of surface
subdivisions by a set of polygons, faces, which are made up
of vertices. The vertices describe how the mesh coordinates
x, y, z exist in the 3D space and connect to each other
forming the faces. There have been a lot of works using
this type of representation [51], [52], [18]. Availability of
topology in meshes makes them a good candidate to describe

local regions on surfaces. Graph Convolutional Networks
(GCN) are common deep learning algorithms to process 3D
meshes.

d) UV-based: Finally, there are a few novel works that
also use UV maps to represent 3D data [10], [39], [14]
and reconstruct and model objects, faces and hands. A UV
map is the flat representation of the surface of a 3D model,
usually used to wrap textures easily and efficiently. In the
works mentioned before, UV maps are used to store in a 2D
flat surface the 3D coordinates of the vertices/points of the
objects. Having this 2D representation allow the models to
predict geometry in an image-to-image translation fashion.

A. Garment reconstruction

Inferring 3D cloth models from single images is an
extremely challenging task comparing to simple and static
objects like chairs or cars. Garments are not only very
dynamic objects but also belong to a domain where there
is a huge variety of topologies and types. Early works
approached the problem from a geometric perspective [8],
[56], [22]. Then, the advent of deep learning achieved
impressive progress in the task of reconstructing unclothed
human shape and pose [7], [23], [25], [26], [37], [38], [47],
[55]. Nevertheless, recovering clothed human 3D models
did not progress in the same way, not only because of the
challenges mentioned before but also as a consequence of
the lack of large annotated datasets. It is only recently, in
the last few years, that new large datasets and deep learning
works focused on this domain have started to emerge, trying
to push its state-of-the-art.

In the specific field of garment reconstruction, frameworks
also use different representations for clothing. There are
works that use voxel-based representations [50] or visual
hulls [35], although they do not allow high resolution. There
are also some works that use implicit functions [44], [45],
[12], but their limitation is that the output does not have an
explicit model to control its pose and shape. Other works
follow a quite standard practice in garment reconstruction
which is to represent garments with meshes but as an offset
over the Skinned Multi-Person Linear model (SMPL) body
mesh [6], [1], which is a skinned vertex-based model that
accurately represents a wide variety of body shapes in natural
human poses [29]. Finally, to our best knowledge, there is
just a single work [2] that also uses UV maps for the task
of 2D to 3D garment reconstruction. In their model, authors
also follow the standard practice mentioned before and use
displacement UV maps, which basically contain 3D vectors
that displace the underlying surface and that are defined on
top of the SMPL body. These representations defined as an
offset over the SMPL body have the disadvantage that it
may fail for loose-fitting garments, which have significant
displacements over the shape of the body. In [2] they do not
tackle this issue and fail for some types of garments such as
dresses. Our approach, using also displacement UV maps, is
able to handle loose-fitting garments by using a semantic-
guided class-specific generation network that learns specific
features for each type of garment within a unique system.



Fig. 1: Overview of the proposed LGGAN. The symbol ⊕ denotes element-wise addition, ⊗ element-wise multiplication
and s channel-wise softmax. Source: Own elaboration adapted from [48].

III. METHODOLOGY

Our goal is to reconstruct 3D clothed humans from just a
single 2D image. To do so, we use displacement UV maps
to represent 3D data and approach the task of 2D to 3D
reconstruction as an image-to-image translation problem, in
which the RGB input image is translated into a UV map. In
this problem, models learn mappings from input images to
output images. However, as in our case input and output
do not have a clear pixel correspondence between them,
as pixels follow a very different path from RGB image
(input) to the UV map (output), we tackle the problem as
done in cross-view image translation task [42]. In this task,
models use a semantic guide that helps them to learn the
correspondences between the target and source images. Fol-
lowing a similar approach, we adapt a state-of-the-art model
in this task, LGGAN (Local class-specific and Global image-
level Generative Adversarial Networks) [48], and study its
performance in the UV map domain. This model is based
on GANs [17], more specifically in CGANs [34], and is
mainly composed of three parts/branches: a semantic-guided
class-specific generator modelling local context, an image-
level generator modelling the global layout, and a weight-
map generator for joining the local and the global generators.
An overview of the proposed system is shown in Fig. 1.

A. UV maps

We create UV maps B, S and U for the body mesh,
garment semantic segments and garment mesh, respectively.
For the body we use SMPL mesh and topology, following
the shape from CLOTH3D++ [30]. To create the garment
UV maps, we first align all the garment topologies with a
canonical topology to have a homogeneous space. The reason

is that each garment has a different topology which is known
during training, but unknown at inference time. Therefore,
to avoid predicting the garment topology at inference, we
use a homogeneous topology, same as the body. To do so,
we register garments on top of SMPL body using non-rigid
ICP [3] as a preprocessing step similar to [5]. As in [2], we
use displacement UV maps that store garment vertices as an
offset over the estimated SMPL body vertices. Additionally,
we create garment UV map of semantic labels, meaning each
UV coordinate is assigned a color w.r.t. its garment class. An
example of body and garment UV maps is shown in Fig. 2.

The UV coordinates are discrete since a 3D mesh is a
discrete representation and has a finite number of vertices.
Therefore, the UV maps have empty gaps between vertices,
as can be seen in Fig. 2a. To avoid these gaps and make
the UV map image smoother, we use image inpainting
techniques to estimate the values of the empty spaces. Image
inpainting is a form of image restoration that is usually
used to restore old and degraded photos or repair images
with missing areas. In particular, we use the Navier-Stokes
based method [4], which propagates the smoothness of the
image via partial differential equations and at the same time
preserves the edges at the boundary [32]. With this technique,
we obtain a UV map like the one in Fig. 2b.

B. LGGAN for 3D garment reconstruction

Like the original GAN [17], LGGAN is composed of a
generator G and a discriminator D. The generator G consists
of a parameter-sharing encoder E, an image-level global
generator Gg , a class-level local generator Gl and a weight
map generator Gw. The encoder E shares parameters to all
the three generation branches to make a compact backbone



(a) Original UV (b) Inpainted UV (c) Semantic map (d) SMPL body
map

Fig. 2: Examples of an original UV map, its inpainted
version, a semantic segmentation map (each color represents
a different garment type) and a SMPL body UV map.

network. Gradients from all the three generators Gg , Gl

and Gw contribute together to the learning of the encoder.
LGGAN, originally, is applied on semantic guided cross-
view image generation in which the input RGB image is
concatenated with a semantic map and fed to the backbone
encoder E. This semantic map is a semantic segmentation of
the target image, with a class label for every type of object
appearing on it. In this paper, we adapt LGGAN to translate
the input image to the garment UV map.

Our model expects an RGB image as input along with a
conditioning on 1) UV map segmentation S that guides and
controls it through the class-level local generator Gl, and 2)
the SMPL body UV map B of the human to condition the
image-level global generator Gg and the discriminator D.
Note that at inference time the semantic map S is estimated
by the same LGGAN model and the SMPL body surface,
which is used to create body UV map B, is estimated by
SMPLR [31].

LGGAN extends the standard GAN discriminator to a
cross-domain structure that receives as input two pairs, each
one containing a UV map and the condition of the model.
Nevertheless, the goal of the discriminator D is the same,
try to distinguish the generated UV maps from the real ones.

1) Parameter-Sharing Encoder: The first module of the
network is a backbone encoder E. This module basically
takes the input I and applies several convolutions to encode
it and obtain a latent representation E(I). It is composed
of three convolutional blocks and nine residual blocks (Res-
Blocks) [21]. Note that the input I , as explained before, is
the concatenation of the input RGB image and the SMPL
body UV map B.

2) Class-Specific Local Generation Network: is a novel
local class-specific generation network Gl that separately
constructs a generator for each semantic class. It helps to
have more diverse generation for different garment classes.
Each sub-generation branch has independent parameters and
concentrates on a specific class, thus, producing better gen-
eration quality for each garment and yielding richer local
details. This means class-Specific Local Generation Network
avoids converging to average dynamics among different
garments. Its overview is shown in Fig. 3.

This generator receives as input the output of the encoder,
the encoded features E(I), which are fed into two consecu-
tive deconvolutional blocks to increase the spatial size. The

Fig. 3: Class-Specific Local Generation Network overview.
The symbol ⊗ denotes element-wise multiplication, and
c channel-wise concatenation. Source: Own elaboration

adapted from [48].

scaled feature map f ′ is then multiplied by the semantic mask
of each class Mi, obtained from the semantic map S. By
doing this multiplication, we obtain a filtered class-specific
feature map for each one of the classes. This mask-guided
feature filtering can be expressed as:

Fi = Mi · f ′, i = 1, 2, . . . , c (1)

where c is the number of semantic classes (i.e. num-
ber of types of garment). After computing these filtered
feature maps, each feature map Fi is fed into a different
convolutional block, the one for the corresponding class i,
which generates a class-specific local UV map Uli . The loss
used in this step is a semantic-mask guided pixel-wise L1
reconstruction loss:

Llocal
L1 =

c∑
i=1

EUr,Uli
[∥Ur ·Mi − Uli∥1] (2)

Finally, to generate the final output Ul of the local genera-
tor, an element-wise addition of all the class-specific outputs
is applied:

UL
l = Ul1 ⊕ Ul2 ⊕ · · · ⊕ Ulc (3)

3) Class-Specific Discriminative Feature Learning: To
have more diverse generation for the different semantic
classes, the authors of the original LGGAN also propose a
classification-based feature learning module to learn more
discriminative class-specific feature representations. This
module receives as input a pack of feature maps pro-
duced from the different local generation branches Fp =
{F1, ..., Fc} and predicts the classification probability of



the c classes of the image. As in the input image do not
appear all garment types/classes, features from local branches
corresponding to the void classes should not contribute to the
classification loss. For this reason, the loss defined here is a
Cross-Entropy (CE) loss, but filtering out the void classes by
multiplying them with a void class indicator for each input
sample. The indicator is a one hot vector H = {Hi}ci=1,
with Hi = 1 for a valid class and Hi = 0 for a void one.
The final CE loss is as follows:

LCE = −
c∑

m=1

Hm

c∑
i=1

1{Y (i) = i} log (f (Fi)) (4)

being 1{·} an indicator function that will return 1 if Y (i) = i,
0 otherwise, f(·) the function that produces the predicted
classification probability given an input feature map F (i),
and Y the label set of all the classes.

4) Image-Level Global Generation Network: Apart from
the local generator, LGGAN contains a global generation
network Gg that captures global structure information or
layout of the target images, in our case, UV maps. As in the
local generator, this module receives as input the encoded
features E(I). The global result Ug is obtained through a
feed-forward computation Ug = Gg (E (I)).

5) Pixel-Level Fusion Weight-Map Generation Network:
To combine local and global generated outputs, Ul and Ug ,
the LGGAN contains a pixel-level weight map generator Gw,
which generates pixel-wise weights. Thus, the final output,
a two-channel weight map Wf , is calculated as:

Wf = Softmax (Gw (E (S))) (5)

Finally, Wf is split to have a weight map Wl for the local
generation and another one Wg for the global. The fused
final generated UV map is computed as follows:

Uf = Ug ⊗Wg + Ul ⊗Wl (6)

being ⊗ an element-wise multiplication operation.
6) Dual-Discriminator: The single domain vanilla dis-

criminator from the original GAN [17] is extended to a cross-
domain structure named semantic-guided discriminator. Its
inputs are the SMPL body UV map B, the final output of
the generator module (fake UV map) Uf and the ground truth
output (real UV map) Ur.

LLGGAN (G,D) = EB,Ur
[logD (B,Ur)]

+EB,Uf
[log (1−D (B,Uf ))]

(7)

7) 3D loss functions: Apart from the losses of the original
LGGAN model, described above, our model has four more
types of 3D loss functions, which are applied on meshes.
For this reason, to use them in our approach, in each step
we recover 3D meshes by unwrapping the generated UV
maps.

These losses are responsible for not only regressing the
generated vertices to the ground truth but also ensuring
that the generated mesh converges to a smooth and uniform
shape. More specifically, two of the four losses are responsi-
ble for the direct comparison between predicted and ground

truth vertices and face normals (LsmoothL1, Lnormal), while the
other two are in charge of adding regularisation to prevent the
network of getting stuck into some local minimum (Llaplacian,
Ledge).

Below we detail the contribution and computation of each
of the losses. When formalising them, we use p for a vertex
in the predicted mesh, q for a vertex in the ground truth mesh
and N (p) for the set containing the neighbours of p.

a) Smooth L1 loss: This loss is a combination of L1
and L2 losses, used as a penalty to regress the predicted
points p to its correct position, the ground truth q. It basically
uses squared term (L2 term) if the absolute element-wise
error falls below threshold β, and L1 term otherwise. This
makes it less sensitive to outliers and, in some cases, prevents
exploding gradients [15].

LsmoothL1 =

{
0.5 (p− q)

2
/β, if |p− q| < β

|p− q| − 0.5β, otherwise
(8)

b) Surface normal loss: This term forces the normal of
the faces from the predicted mesh to be consistent with the
ground truth normals. Coming from Pixel2Mesh work [51],
[52], this loss is defined as:

Lnormal =
∑
p

∑
q=argminq(∥p−q∥2

2)

∥∥(p− k)T · nq

∥∥2
2

, s.t. k ∈ N (p)

(9)

being q the closest ground truth vertex to p found using
chamfer distance, k a neighbour of p, and nq the observed
surface normal from ground truth at that vertex.

c) Laplacian smoothing regularisation: This loss, from
a work by Nelan et al. [36], prevents the vertices from
moving too freely, avoiding the output mesh from deforming
too much and ensuring that it has a smooth surface.

Llaplacian =
∑
p

∑
k∈N (p)

1

|N (p)|
(k − p) (10)

d) Edge length regularization: To avoid having flying
vertices, we penalise long edges by adding one last loss,
extracted also from [51], [52].

Ledge =
∑
p

∑
k∈N (p)

∥p− k∥22 (11)

Finally, the overall mesh loss is computed as a weighted
sum of all these four losses, and contributes to all the three
LGGAN generation branches, Gg , Gl and Gw, and the
encoder E:

Lmesh = λsLsmoothL1+λnLnormal+λlLlaplacian+λeLedge (12)

IV. EXPERIMENTS

A. Dataset

The dataset used for training and evaluating our model is
CLOTH3D++ [30], which extends CLOTH3D [5], and was
introduced in 2020 as the first large-scale synthetic dataset
of 3D clothed human sequences. It has over 2 million 3D
samples with a large variety of garment types, topology,



shape, size, tightness and fabric. Garments are simulated on
top of thousands of different human pose sequences and body
shapes, generating realistic cloth dynamics.

B. Evaluation metrics

To evaluate our approach and the different experiments
done, we follow [30] and use their definition of the surface-
to-surface (S2S) error metric, an extension of the chamfer
distance (CD) that has the peculiarity to compute the distance
based on the nearest faces rather than nearest vertices. As
S2S evaluate the results based on mesh format, during eval-
uation we unwrap UV map representations into 3D meshes.

C. Training details

Training and experiments were performed on an NVIDIA
GeForce GTX 1080 Ti GPU, with 11GB of memory and
CUDA Version 11.0. RGB images are resized to 256× 256
and aligned so the human is centered on it. The number
of training epochs is set to 50, with a batch size of 4.
Dropout is set to 0.5 and the weights of the 3D mesh losses
defined before (Equation 12) are empirically set as: λs = 1.0,
λn = 0.01, λl = 0.5 and λe = 0.5. The β parameter of the
LsmoothL1 loss is set to 1, as default (Equation 8).

Our LGGAN model is trained and optimised in an end-to-
end fashion. We follow the optimisation method in [17] to
optimise our LGGAN model, i.e. one gradient descent step
on generators and discriminator alternately. We first train the
encoder E and the three generators Gg , Gl and Gw with D
fixed and then we train D with E, Gg , Gl and Gw fixed. The
solver used is Adam [24] with momentum terms β1 = 0.5
and β2 = 0.999. The initial learning rate used for Adam is
0.0001, but from epoch 25 onwards, we start to decrease it
by 4e−6. Finally, network weights are initialised with Xavier
[16] strategy.

D. Ablation study

In this section, we present an ablation study of our
model, analysing the contribution of each different technique
designed, in a qualitative and quantitative manner. To do so,
we take apart one component of our system at a time and
show S2S error metric on the test set as well as some 3D
reconstruction examples.

The quantitative study is shown in Table I. As we can
observe, the full model is the one with the best performance,
having an average S2S error of 19.1 mm. The parts that seem
to contribute less to the performance of the model are the
mesh losses and the conditioning on the SMPL body UV
map, since the errors remain practically unchanged. On the
other hand, the part that seems to contribute the most to the
performance of the model is using displacement UV maps
as our 3D representation. When we use original UV maps,
which are not defined on top of SMPL, the performance in
the test set decreases dramatically, having a much higher
error in all types of clothing. The class-level local generator
and the inpainting technique applied in the pre-processing
of the UV maps are also key to our model, helping it to
decrease its error significantly in most of the garment types.

TABLE I: Ablation study that evaluates the contribution of
the different components of our model to its performance.
Evaluate it computing S2S error (in mm) per garment type
on the test set. Small is better (best values in bold).

S2S error (in mm)Model Top T-shirt Trousers Jumpsuit Skirt Dress All
Full model 18.1 21.6 15.3 18.3 25.6 21.1 19.1
-Mesh losses 18.3 21.9 15.4 18.5 25.1 21.1 19.2
-Condition on body 18.9 22.3 16.3 18.3 26.4 21.6 19.5
-Displacement maps 45.6 44.5 42.1 41.4 47.8 46.5 43.7
-Local generator 24.5 28.3 23.2 26.3 44.9 32.1 27.8
-Inpainting 20.9 24.1 22.6 21.3 42.6 31.2 24.9

In Fig. 4 we show a qualitative analysis of the 3D
reconstructions of different types of garments when removing
one component of our final system at a time, as done above.
As we can see, the full model is the one that has more realism
and has the best resemblance with the ground truth. Our
model is capable of learning and modelling the dynamics
of garments, regardless of the action, pose, race, gender and
shape of the human. It is also able to accurately reconstruct
garments regardless of the image point of view, recovering
also the garment parts that are occluded. However, the recon-
structions of our best model are not perfect at all. It is still
not capable of generating garments as smooth as those of the
ground truth, and, although it is able to reconstruct properly
loose-fitting garments such as dresses or skirts thanks to the
semantic-guided class-specific generation branch, it has some
difficulties in modelling the larger displacements over the
body.

In this analysis, we can appreciate much more the differ-
ence between the full model and the one not computing mesh
losses. The generated reconstructions of the model without
mesh losses are not as smooth as the reconstruction of the
full model. Regarding conditioning on the SMPL body UV
map, we observe that it has virtually no impact. We can
also confirm that the major contribution comes from using
displacement UV maps, as the model not using them has
difficulties in capturing the human’s movement and it has
lots of artefacts. Lastly, we observe that when not using
the inpainting technique or removing the local generator,
reconstructions have also lots of lumps and wrinkles. Fur-
thermore, the generated garments of the model without the
local generator have quite significant artefacts at the edges
where the front and the back of the garment (separated in
the UV map) are joined.

E. Comparison with state-of-the-art methods

To the best of our knowledge, the best current state-of-the-
art model in the task of RGB to 3D garment reconstruction
for the CLOTH3D++ dataset is its baseline, presented in
[30]. We do not only compare our model against it but also
against SMPLicit [12], a novel generative model that can be
used for 3D reconstructions of clothed humans and that has
demonstrated very good results on other datasets, competing
with or outperforming related works [2], [45].

In Table II we compare our model quantitatively against
these two models using the S2S metric per garment type. As
SMPLicit is not capable of inferring dresses and jumpsuits,



Fig. 4: Qualitative ablation study evaluating the contribution of the different components of the system to its performance.

due to how it was trained, we do not take these garment types
into account when computing its metrics. It can be observed
that our model obtains a lower error across all garment
types, with an average error of about 12 mm less against
CLOTH3D++ baseline and 24 mm less against SMPLicit.

TABLE II: S2S error (in mm) per garment type comparison
against SOTA in CLOTH3D++ dataset. Small is better (best
values in bold).

S2S error (in mm)Model Top T-shirt Trousers Jumpsuit Skirt Dress All
CLOTH3D++ baseline [30] 23.9 43.3 40.6 22.1 32.8 29.3 31.3

SMPLicit [12] 41.4 36.2 31.8 - 68.1 - 42.9
Ours 18.1 21.6 15.3 18.3 25.6 21.1 19.1

In Fig. 5, we show a qualitative comparison between
our solution and SMPLicit. We observe that both models
produce realistic results and capture well the shape of the
garments. SMPLicit generates smoother garment surfaces
than our model but is not able to capture all garment dynamic
details. Moreover, as shown in the first row, SMPLicit cannot
reconstruct properly skirts that have large displacements over
the body, since it was trained with skirts very tight to the
bodies.

V. CONCLUSION

In this paper, we have proposed a system that learns gar-
ment dynamics and reconstructs 3D garments from a single
RGB image, by using UV maps to represent 3D data. Our
model achieves state-of-the-art results on the CLOTH3D++
dataset, generating good quality and realistic reconstructions
and being able to deal with lighting, occlusions, viewpoint,
dynamism, etc. It has the capacity to learn the dynamics of
garments and infer their shape regardless of their topology

Fig. 5: Qualitative comparison against SMPLicit [12].

and the human’s action, pose, gender, race and body shape.
Moreover, with just a single network we are able to recon-
struct a wide variety of different types of garments including
loose-fitting ones.

As future work, we could take advantage of the tempo-
ral data to improve the current performance by using an
attention-based mechanism. We could also try to control the
generation of our model with the conditioning it allows, and
test it in the task of garment shape transition and editing.
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Atlasnet: A papier-mâché approach to learning 3d surface generation,
2018.

[19] R. Hanocka, A. Hertz, N. Fish, R. Giryes, S. Fleishman, and D. Cohen-
Or. Meshcnn. ACM Transactions on Graphics, 38(4):1–12, Jul 2019.

[20] R. Hartley and A. Zisserman. Multiple View Geometry in Computer
Vision. Cambridge University Press, 2 edition, 2004.

[21] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition, 2015.

[22] M.-H. Jeong, D.-H. Han, and H.-S. Ko. Garment capture from a
photograph. Comput. Animat. Virtual Worlds, 26(3–4):291–300, May
2015.

[23] A. Kanazawa, M. J. Black, D. W. Jacobs, and J. Malik. End-to-end
recovery of human shape and pose, 2018.

[24] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization,
2017.

[25] N. Kolotouros, G. Pavlakos, M. J. Black, and K. Daniilidis. Learning
to reconstruct 3d human pose and shape via model-fitting in the loop,
2019.

[26] N. Kolotouros, G. Pavlakos, and K. Daniilidis. Convolutional mesh
regression for single-image human shape reconstruction, 2019.

[27] A. Laurentini. The visual hull concept for silhouette-based image
understanding. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 16:150–162, 03 1994.

[28] Y. Li, R. Bu, M. Sun, W. Wu, X. Di, and B. Chen. Pointcnn:
Convolution on X -transformed points, 2018.

[29] M. Loper, N. Mahmood, J. Romero, G. Pons-Moll, and M. J. Black.
SMPL: A skinned multi-person linear model. ACM Trans. Graphics
(Proc. SIGGRAPH Asia), 34(6):248:1–248:16, Oct. 2015.

[30] M. Madadi, H. Bertiche, W. Bouzouita, I. Guyon, and S. Escalera.
Learning cloth dynamics: 3d + texture garment reconstruction bench-
mark. In Proceedings of the NeurIPS 2020 Competition and Demon-
stration Track, PMLR, volume 133, pages 57–76, 2021.

[31] M. Madadi, H. Bertiche, and S. Escalera. Smplr: Deep smpl reverse
for 3d human pose and shape recovery, 2019.

[32] D. Maduskar and N. Dube. Navier–stokes-based image inpainting
for restoration of missing data due to clouds. In M. K. Sharma,
V. S. Dhaka, T. Perumal, N. Dey, and J. M. R. S. Tavares, editors,
Innovations in Computational Intelligence and Computer Vision, pages
497–505, Singapore, 2021. Springer Singapore.

[33] P. Mandikal and R. V. Babu. Dense 3d point cloud reconstruction
using a deep pyramid network, 2019.

[34] M. Mirza and S. Osindero. Conditional generative adversarial nets,
2014.

[35] R. Natsume, S. Saito, Z. Huang, W. Chen, C. Ma, H. Li, and
S. Morishima. Siclope: Silhouette-based clothed people, 2019.

[36] A. Nealen, T. Igarashi, O. Sorkine, and M. Alexa. Laplacian mesh
optimization. GRAPHITE ’06, page 381–389, New York, NY, USA,
2006. Association for Computing Machinery.

[37] M. Omran, C. Lassner, G. Pons-Moll, P. V. Gehler, and B. Schiele.
Neural body fitting: Unifying deep learning and model-based human
pose and shape estimation, 2018.

[38] G. Pavlakos, V. Choutas, N. Ghorbani, T. Bolkart, A. A. A. Osman,
D. Tzionas, and M. J. Black. Expressive body capture: 3d hands, face,
and body from a single image, 2019.

[39] D. Pavllo, G. Spinks, T. Hofmann, M.-F. Moens, and A. Lucchi.
Convolutional generation of textured 3d meshes, 2020.

[40] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep learning on
point sets for 3d classification and segmentation, 2017.

[41] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep hierarchical
feature learning on point sets in a metric space, 2017.

[42] K. Regmi and A. Borji. Cross-view image synthesis using conditional
gans, 2018.

[43] G. Riegler, A. O. Ulusoy, and A. Geiger. Octnet: Learning deep 3d
representations at high resolutions, 2017.

[44] S. Saito, Z. Huang, R. Natsume, S. Morishima, A. Kanazawa, and
H. Li. Pifu: Pixel-aligned implicit function for high-resolution clothed
human digitization, 2019.

[45] S. Saito, T. Simon, J. Saragih, and H. Joo. Pifuhd: Multi-level pixel-
aligned implicit function for high-resolution 3d human digitization,
2020.

[46] J. L. Schonberger and J.-M. Frahm. Structure-from-motion revisited.
In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2016.

[47] D. Smith, M. Loper, X. Hu, P. Mavroidis, and J. Romero. Facsimile:
Fast and accurate scans from an image in less than a second, 2019.

[48] H. Tang, D. Xu, Y. Yan, P. H. S. Torr, and N. Sebe. Local class-
specific and global image-level generative adversarial networks for
semantic-guided scene generation, 2020.

[49] M. Tatarchenko, A. Dosovitskiy, and T. Brox. Octree generating
networks: Efficient convolutional architectures for high-resolution 3d
outputs, 2017.

[50] G. Varol, D. Ceylan, B. Russell, J. Yang, E. Yumer, I. Laptev, and
C. Schmid. Bodynet: Volumetric inference of 3d human body shapes,
2018.

[51] N. Wang, Y. Zhang, Z. Li, Y. Fu, W. Liu, and Y.-G. Jiang. Pixel2mesh:
Generating 3d mesh models from single rgb images, 2018.

[52] C. Wen, Y. Zhang, Z. Li, and Y. Fu. Pixel2mesh++: Multi-view 3d
mesh generation via deformation, 2019.

[53] J. Wu, C. Zhang, T. Xue, W. T. Freeman, and J. B. Tenenbaum.
Learning a probabilistic latent space of object shapes via 3d generative-
adversarial modeling, 2017.

[54] H. Xie, H. Yao, X. Sun, S. Zhou, and S. Zhang. Pix2vox: Context-
aware 3d reconstruction from single and multi-view images. 2019
IEEE/CVF International Conference on Computer Vision (ICCV), Oct
2019.

[55] X. Xu, H. Chen, F. Moreno-Noguer, L. A. Jeni, and F. D. la Torre.
3d human shape and pose from a single low-resolution image with
self-supervised learning, 2020.

[56] B. Zhou, X. Chen, Q. Fu, K. Guo, and P. Tan. Garment modeling
from a single image. Comput. Graph. Forum, 32:85–91, 2013.


