toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Fei Yang; Luis Herranz; Yongmei Cheng; Mikhail Mozerov edit   pdf
url  doi
openurl 
  Title (up) Slimmable compressive autoencoders for practical neural image compression Type Conference Article
  Year 2021 Publication 34th IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 4996-5005  
  Keywords  
  Abstract Neural image compression leverages deep neural networks to outperform traditional image codecs in rate-distortion performance. However, the resulting models are also heavy, computationally demanding and generally optimized for a single rate, limiting their practical use. Focusing on practical image compression, we propose slimmable compressive autoencoders (SlimCAEs), where rate (R) and distortion (D) are jointly optimized for different capacities. Once trained, encoders and decoders can be executed at different capacities, leading to different rates and complexities. We show that a successful implementation of SlimCAEs requires suitable capacity-specific RD tradeoffs. Our experiments show that SlimCAEs are highly flexible models that provide excellent rate-distortion performance, variable rate, and dynamic adjustment of memory, computational cost and latency, thus addressing the main requirements of practical image compression.  
  Address Virtual; June 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPR  
  Notes LAMP; 600.120 Approved no  
  Call Number Admin @ si @ YHC2021 Serial 3569  
Permanent link to this record
 

 
Author Md. Mostafa Kamal Sarker; Hatem A. Rashwan; Farhan Akram; Vivek Kumar Singh; Syeda Furruka Banu; Forhad U H Chowdhury; Kabir Ahmed Choudhury; Sylvie Chambon; Petia Radeva; Domenec Puig; Mohamed Abdel-Nasser edit   pdf
url  openurl
  Title (up) SLSNet: Skin lesion segmentation using a lightweight generative adversarial network Type Journal Article
  Year 2021 Publication Expert Systems With Applications Abbreviated Journal ESWA  
  Volume 183 Issue Pages 115433  
  Keywords  
  Abstract The determination of precise skin lesion boundaries in dermoscopic images using automated methods faces many challenges, most importantly, the presence of hair, inconspicuous lesion edges and low contrast in dermoscopic images, and variability in the color, texture and shapes of skin lesions. Existing deep learning-based skin lesion segmentation algorithms are expensive in terms of computational time and memory. Consequently, running such segmentation algorithms requires a powerful GPU and high bandwidth memory, which are not available in dermoscopy devices. Thus, this article aims to achieve precise skin lesion segmentation with minimum resources: a lightweight, efficient generative adversarial network (GAN) model called SLSNet, which combines 1-D kernel factorized networks, position and channel attention, and multiscale aggregation mechanisms with a GAN model. The 1-D kernel factorized network reduces the computational cost of 2D filtering. The position and channel attention modules enhance the discriminative ability between the lesion and non-lesion feature representations in spatial and channel dimensions, respectively. A multiscale block is also used to aggregate the coarse-to-fine features of input skin images and reduce the effect of the artifacts. SLSNet is evaluated on two publicly available datasets: ISBI 2017 and the ISIC 2018. Although SLSNet has only 2.35 million parameters, the experimental results demonstrate that it achieves segmentation results on a par with the state-of-the-art skin lesion segmentation methods with an accuracy of 97.61%, and Dice and Jaccard similarity coefficients of 90.63% and 81.98%, respectively. SLSNet can run at more than 110 frames per second (FPS) in a single GTX1080Ti GPU, which is faster than well-known deep learning-based image segmentation models, such as FCN. Therefore, SLSNet can be used for practical dermoscopic applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; no proj Approved no  
  Call Number Admin @ si @ SRA2021 Serial 3633  
Permanent link to this record
 

 
Author Javier Marin; Sergio Escalera edit   pdf
url  openurl
  Title (up) SSSGAN: Satellite Style and Structure Generative Adversarial Networks Type Journal Article
  Year 2021 Publication Remote Sensing Abbreviated Journal  
  Volume 13 Issue 19 Pages 3984  
  Keywords  
  Abstract This work presents Satellite Style and Structure Generative Adversarial Network (SSGAN), a generative model of high resolution satellite imagery to support image segmentation. Based on spatially adaptive denormalization modules (SPADE) that modulate the activations with respect to segmentation map structure, in addition to global descriptor vectors that capture the semantic information in a vector with respect to Open Street Maps (OSM) classes, this model is able to produce
consistent aerial imagery. By decoupling the generation of aerial images into a structure map and a carefully defined style vector, we were able to improve the realism and geodiversity of the synthesis with respect to the state-of-the-art baseline. Therefore, the proposed model allows us to control the generation not only with respect to the desired structure, but also with respect to a geographic area.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; no proj Approved no  
  Call Number Admin @ si @ MaE2021 Serial 3651  
Permanent link to this record
 

 
Author Andres Mafla; Rafael S. Rezende; Lluis Gomez; Diana Larlus; Dimosthenis Karatzas edit   pdf
doi  openurl
  Title (up) StacMR: Scene-Text Aware Cross-Modal Retrieval Type Conference Article
  Year 2021 Publication IEEE Winter Conference on Applications of Computer Vision Abbreviated Journal  
  Volume Issue Pages 2219-2229  
  Keywords  
  Abstract  
  Address Virtual; January 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WACV  
  Notes DAG; 600.121 Approved no  
  Call Number Admin @ si @ MRG2021a Serial 3492  
Permanent link to this record
 

 
Author Fatemeh Noroozi; Ciprian Corneanu; Dorota Kamińska; Tomasz Sapiński; Sergio Escalera; Gholamreza Anbarjafari edit   pdf
url  openurl
  Title (up) Survey on Emotional Body Gesture Recognition Type Journal Article
  Year 2021 Publication IEEE Transactions on Affective Computing Abbreviated Journal TAC  
  Volume 12 Issue 2 Pages 505 - 523  
  Keywords  
  Abstract Automatic emotion recognition has become a trending research topic in the past decade. While works based on facial expressions or speech abound, recognizing affect from body gestures remains a less explored topic. We present a new comprehensive survey hoping to boost research in the field. We first introduce emotional body gestures as a component of what is commonly known as “body language” and comment general aspects as gender differences and culture dependence. We then define a complete framework for automatic emotional body gesture recognition. We introduce person detection and comment static and dynamic body pose estimation methods both in RGB and 3D. We then comment the recent literature related to representation learning and emotion recognition from images of emotionally expressive gestures. We also discuss multi-modal approaches that combine speech or face with body gestures for improved emotion recognition. While pre-processing methodologies (e.g. human detection and pose estimation) are nowadays mature technologies fully developed for robust large scale analysis, we show that for emotion recognition the quantity of labelled data is scarce, there is no agreement on clearly defined output spaces and the representations are shallow and largely based on naive geometrical representations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; no proj Approved no  
  Call Number Admin @ si @ NCK2021 Serial 3657  
Permanent link to this record
 

 
Author Henry Velesaca; Patricia Suarez; Dario Carpio; Angel Sappa edit  url
openurl 
  Title (up) Synthesized Image Datasets: Towards an Annotation-Free Instance Segmentation Strategy Type Conference Article
  Year 2021 Publication 16th International Symposium on Visual Computing Abbreviated Journal  
  Volume 13017 Issue Pages 131–143  
  Keywords  
  Abstract This paper presents a complete pipeline to perform deep learning-based instance segmentation of different types of grains (e.g., corn, sunflower, soybeans, lentils, chickpeas, mote, and beans). The proposed approach consists of using synthesized image datasets for the training process, which are easily generated according to the category of the instance to be segmented. The synthesized imaging process allows generating a large set of well-annotated grain samples with high variability—as large and high as the user requires. Instance segmentation is performed through a popular deep learning based approach, the Mask R-CNN architecture, but any learning-based instance segmentation approach can be considered. Results obtained by the proposed pipeline show that the strategy of using synthesized image datasets for training instance segmentation helps to avoid the time-consuming image annotation stage, as well as to achieve higher intersection over union and average precision performances. Results obtained with different varieties of grains are shown, as well as comparisons with manually annotated images, showing both the simplicity of the process and the improvements in the performance.  
  Address Virtual; October 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ISVC  
  Notes MSIAU Approved no  
  Call Number Admin @ si @ VSC2021 Serial 3667  
Permanent link to this record
 

 
Author Neelu Madan; Arya Farkhondeh; Kamal Nasrollahi; Sergio Escalera; Thomas B. Moeslund edit   pdf
openurl 
  Title (up) Temporal Cues From Socially Unacceptable Trajectories for Anomaly Detection Type Conference Article
  Year 2021 Publication IEEE/CVF International Conference on Computer Vision Workshops Abbreviated Journal  
  Volume Issue Pages 2150-2158  
  Keywords  
  Abstract State-of-the-Art (SoTA) deep learning-based approaches to detect anomalies in surveillance videos utilize limited temporal information, including basic information from motion, e.g., optical flow computed between consecutive frames. In this paper, we compliment the SoTA methods by including long-range dependencies from trajectories for anomaly detection. To achieve that, we first created trajectories by running a tracker on two SoTA datasets, namely Avenue and Shanghai-Tech. We propose a prediction-based anomaly detection method using trajectories based on Social GANs, also called in this paper as temporal-based anomaly detection. Then, we hypothesize that late fusion of the result of this temporal-based anomaly detection system with spatial-based anomaly detection systems produces SoTA results. We verify this hypothesis on two spatial-based anomaly detection systems. We show that both cases produce results better than baseline spatial-based systems, indicating the usefulness of the temporal information coming from the trajectories for anomaly detection. We observe that the proposed approach depicts the maximum improvement in micro-level Area-Under-the-Curve (AUC) by 4.1% on CUHK Avenue and 3.4% on Shanghai-Tech over one of the baseline method. We also show a high performance on cross-data evaluation, where we learn the weights to combine spatial and temporal information on Shanghai-Tech and perform evaluation on CUHK Avenue and vice-versa.  
  Address Virtual; October 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICCVW  
  Notes HUPBA; no proj Approved no  
  Call Number Admin @ si @ MFN2021 Serial 3649  
Permanent link to this record
 

 
Author Marc Masana; Tinne Tuytelaars; Joost Van de Weijer edit   pdf
doi  openurl
  Title (up) Ternary Feature Masks: zero-forgetting for task-incremental learning Type Conference Article
  Year 2021 Publication 34th IEEE Conference on Computer Vision and Pattern Recognition Workshops Abbreviated Journal  
  Volume Issue Pages 3565-3574  
  Keywords  
  Abstract We propose an approach without any forgetting to continual learning for the task-aware regime, where at inference the task-label is known. By using ternary masks we can upgrade a model to new tasks, reusing knowledge from previous tasks while not forgetting anything about them. Using masks prevents both catastrophic forgetting and backward transfer. We argue -- and show experimentally -- that avoiding the former largely compensates for the lack of the latter, which is rarely observed in practice. In contrast to earlier works, our masks are applied to the features (activations) of each layer instead of the weights. This considerably reduces the number of mask parameters for each new task; with more than three orders of magnitude for most networks. The encoding of the ternary masks into two bits per feature creates very little overhead to the network, avoiding scalability issues. To allow already learned features to adapt to the current task without changing the behavior of these features for previous tasks, we introduce task-specific feature normalization. Extensive experiments on several finegrained datasets and ImageNet show that our method outperforms current state-of-the-art while reducing memory overhead in comparison to weight-based approaches.  
  Address Virtual; June 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPRW  
  Notes LAMP; 600.120 Approved no  
  Call Number Admin @ si @ MTW2021 Serial 3565  
Permanent link to this record
 

 
Author Josep Llados edit  openurl
  Title (up) The 5G of Document Intelligence Type Conference Article
  Year 2021 Publication 3rd Workshop on Future of Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address Lausanne; Suissa; September 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference FDAR  
  Notes DAG Approved no  
  Call Number Admin @ si @ Serial 3677  
Permanent link to this record
 

 
Author Graham D. Finlayson; Javier Vazquez; Fufu Fang edit   pdf
doi  openurl
  Title (up) The Discrete Cosine Maximum Ignorance Assumption Type Conference Article
  Year 2021 Publication 29th Color and Imaging Conference Abbreviated Journal  
  Volume Issue Pages 13-18  
  Keywords  
  Abstract the performance of colour correction algorithms are dependent on the reflectance sets used. Sometimes, when the testing reflectance set is changed the ranking of colour correction algorithms also changes. To remove dependence on dataset we can
make assumptions about the set of all possible reflectances. In the Maximum Ignorance with Positivity (MIP) assumption we assume that all reflectances with per wavelength values between 0 and 1 are equally likely. A weakness in the MIP is that it fails to take into account the correlation of reflectance functions between
wavelengths (many of the assumed reflectances are, in reality, not possible).
In this paper, we take the view that the maximum ignorance assumption has merit but, hitherto it has been calculated with respect to the wrong coordinate basis. Here, we propose the Discrete Cosine Maximum Ignorance assumption (DCMI), where
all reflectances that have coordinates between max and min bounds in the Discrete Cosine Basis coordinate system are equally likely.
Here, the correlation between wavelengths is encoded and this results in the set of all plausible reflectances ’looking like’ typical reflectances that occur in nature. This said the DCMI model is also a superset of all measured reflectance sets.
Experiments show that, in colour correction, adopting the DCMI results in similar colour correction performance as using a particular reflectance set.
 
  Address Virtual; November 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CIC  
  Notes CIC Approved no  
  Call Number FVF2021 Serial 3596  
Permanent link to this record
 

 
Author Javier M. Olaso; Alain Vazquez; Leila Ben Letaifa; Mikel de Velasco; Aymen Mtibaa; Mohamed Amine Hmani; Dijana Petrovska-Delacretaz; Gerard Chollet; Cesar Montenegro; Asier Lopez-Zorrilla; Raquel Justo; Roberto Santana; Jofre Tenorio-Laranga; Eduardo Gonzalez-Fraile; Begoña Fernandez-Ruanova; Gennaro Cordasco; Anna Esposito; Kristin Beck Gjellesvik; Anna Torp Johansen; Maria Stylianou Kornes; Colin Pickard; Cornelius Glackin; Gary Cahalane; Pau Buch; Cristina Palmero; Sergio Escalera; Olga Gordeeva; Olivier Deroo; Anaïs Fernandez; Daria Kyslitska; Jose Antonio Lozano; Maria Ines Torres; Stephan Schlogl edit  url
openurl 
  Title (up) The EMPATHIC Virtual Coach: a demo Type Conference Article
  Year 2021 Publication 23rd ACM International Conference on Multimodal Interaction Abbreviated Journal  
  Volume Issue Pages 848-851  
  Keywords  
  Abstract The main objective of the EMPATHIC project has been the design and development of a virtual coach to engage the healthy-senior user and to enhance well-being through awareness of personal status. The EMPATHIC approach addresses this objective through multimodal interactions supported by the GROW coaching model. The paper summarizes the main components of the EMPATHIC Virtual Coach (EMPATHIC-VC) and introduces a demonstration of the coaching sessions in selected scenarios.  
  Address Virtual; October 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICMI  
  Notes HUPBA; no proj Approved no  
  Call Number Admin @ si @ OVB2021 Serial 3644  
Permanent link to this record
 

 
Author Rafael E. Rivadeneira; Angel Sappa; Boris X. Vintimilla; Sabari Nathan; Priya Kansal; Armin Mehri; Parichehr Behjati Ardakani; A.Dalal; A.Akula; D.Sharma; S.Pandey; B.Kumar; J.Yao; R.Wu; KFeng; N.Li; Y.Zhao; H.Patel; V. Chudasama; K.Pjajapati; A.Sarvaiya; K.Upla; K.Raja; R.Ramachandra; C.Bush; F.Almasri; T.Vandamme; O.Debeir; N.Gutierrez; Q.Nguyen; W.Beksi edit   pdf
url  doi
openurl 
  Title (up) Thermal Image Super-Resolution Challenge – PBVS 2021 Type Conference Article
  Year 2021 Publication Conference on Computer Vision and Pattern Recognition Workshops Abbreviated Journal  
  Volume Issue Pages 4359-4367  
  Keywords  
  Abstract This paper presents results from the second Thermal Image Super-Resolution (TISR) challenge organized in the framework of the Perception Beyond the Visible Spectrum (PBVS) 2021 workshop. For this second edition, the same thermal image dataset considered during the first challenge has been used; only mid-resolution (MR) and high-resolution (HR) sets have been considered. The dataset consists of 951 training images and 50 testing images for each resolution. A set of 20 images for each resolution is kept aside for evaluation. The two evaluation methodologies proposed for the first challenge are also considered in this opportunity. The first evaluation task consists of measuring the PSNR and SSIM between the obtained SR image and the corresponding ground truth (i.e., the HR thermal image downsampled by four). The second evaluation also consists of measuring the PSNR and SSIM, but in this case, considers the x2 SR obtained from the given MR thermal image; this evaluation is performed between the SR image with respect to the semi-registered HR image, which has been acquired with another camera. The results outperformed those from the first challenge, thus showing an improvement in both evaluation metrics.  
  Address Virtual; June 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPRW  
  Notes MSIAU; 600.130; 600.122 Approved no  
  Call Number Admin @ si @ RSV2021 Serial 3581  
Permanent link to this record
 

 
Author Debora Gil; Oriol Ramos Terrades; Raquel Perez edit  doi
openurl 
  Title (up) Topological Radiomics (TOPiomics): Early Detection of Genetic Abnormalities in Cancer Treatment Evolution Type Book Chapter
  Year 2021 Publication Extended Abstracts GEOMVAP 2019, Trends in Mathematics 15 Abbreviated Journal  
  Volume 15 Issue Pages 89–93  
  Keywords  
  Abstract Abnormalities in radiomic measures correlate to genomic alterations prone to alter the outcome of personalized anti-cancer treatments. TOPiomics is a new method for the early detection of variations in tumor imaging phenotype from a topological structure in multi-view radiomic spaces.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Nature Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; DAG; 600.120; 600.145; 600.139 Approved no  
  Call Number Admin @ si @ GRP2021 Serial 3594  
Permanent link to this record
 

 
Author Alina Matei; Andreea Glavan; Petia Radeva; Estefania Talavera edit  url
doi  openurl
  Title (up) Towards Eating Habits Discovery in Egocentric Photo-Streams Type Journal Article
  Year 2021 Publication IEEE Access Abbreviated Journal ACCESS  
  Volume 9 Issue Pages 17495-17506  
  Keywords  
  Abstract Eating habits are learned throughout the early stages of our lives. However, it is not easy to be aware of how our food-related routine affects our healthy living. In this work, we address the unsupervised discovery of nutritional habits from egocentric photo-streams. We build a food-related behavioral pattern discovery model, which discloses nutritional routines from the activities performed throughout the days. To do so, we rely on Dynamic-Time-Warping for the evaluation of similarity among the collected days. Within this framework, we present a simple, but robust and fast novel classification pipeline that outperforms the state-of-the-art on food-related image classification with a weighted accuracy and F-score of 70% and 63%, respectively. Later, we identify days composed of nutritional activities that do not describe the habits of the person as anomalies in the daily life of the user with the Isolation Forest method. Furthermore, we show an application for the identification of food-related scenes when the camera wearer eats in isolation. Results have shown the good performance of the proposed model and its relevance to visualize the nutritional habits of individuals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; no proj Approved no  
  Call Number Admin @ si @ MGR2021 Serial 3637  
Permanent link to this record
 

 
Author Fei Yang edit  isbn
openurl 
  Title (up) Towards Practical Neural Image Compression Type Book Whole
  Year 2021 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Images and videos are pervasive in our life and communication. With advances in smart and portable devices, high capacity communication networks and high definition cinema, image and video compression are more relevant than ever. Traditional block-based linear transform codecs such as JPEG, H.264/AVC or the recent H.266/VVC are carefully designed to meet not only the rate-distortion criteria, but also the practical requirements of applications.
Recently, a new paradigm based on deep neural networks (i.e., neural image/video compression) has become increasingly popular due to its ability to learn powerful nonlinear transforms and other coding tools directly from data instead of being crafted by humans, as was usual in previous coding formats. While achieving excellent rate-distortion performance, these approaches are still limited mostly to research environments due to heavy models and other practical limitations, such as being limited to function on a particular rate and due to high memory and computational cost. In this thesis, we study these practical limitations, and designing more practical neural image compression approaches.
After analyzing the differences between traditional and neural image compression, our first contribution is the modulated autoencoder (MAE), a framework that includes a mechanism to provide multiple rate-distortion options within a single model with comparable performance to independent models. In a second contribution, we propose the slimmable compressive autoencoder (SlimCAE), which in addition to variable rate, can optimize the complexity of the model and thus reduce significantly the memory and computational burden.
Modern generative models can learn custom image transformation directly from suitable datasets following encoder-decoder architectures, task known as image-to-image (I2I) translation. Building on our previous work, we study the problem of distributed I2I translation, where the latent representation is transmitted through a binary channel and decoded in a remote receiving side. We also propose a variant that can perform both translation and the usual autoencoding functionality.
Finally, we also consider neural video compression, where the autoencoder is typically augmented with temporal prediction via motion compensation. One of the main bottlenecks of that framework is the optical flow module that estimates the displacement to predict the next frame. Focusing on this module, we propose a method that improves the accuracy of the optical flow estimation and a simplified variant that reduces the computational cost.
Key words: neural image compression, neural video compression, optical flow, practical neural image compression, compressive autoencoders, image-to-image translation, deep learning.
 
  Address December 2021  
  Corporate Author Thesis Ph.D. thesis  
  Publisher IMPRIMA Place of Publication Editor Luis Herranz;Mikhail Mozerov;Yongmei Cheng  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-122714-7-8 Medium  
  Area Expedition Conference  
  Notes LAMP Approved no  
  Call Number Admin @ si @ Yan2021 Serial 3608  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: