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Abstract

The determination of precise skin lesion boundaries in dermoscopic images using

automated methods faces many challenges, most importantly, the presence of hair, in-

conspicuous lesion edges and low contrast in dermoscopic images, and variability in

the color, texture and shapes of skin lesions. Existing deep learning-based skin le-

sion segmentation algorithms are expensive in terms of computational time and mem-

ory. Consequently, running such segmentation algorithms requires a powerful GPU

and high bandwidth memory, which are not available in dermoscopy devices. Thus,

this article aims to achieve precise skin lesion segmentation with minimum resources:

a lightweight, efficient generative adversarial network (GAN) model called SLSNet,
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which combines 1-D kernel factorized networks, position and channel attention, and

multiscale aggregation mechanisms with a GAN model. The 1-D kernel factorized

network reduces the computational cost of 2D filtering. The position and channel at-

tention modules enhance the discriminative ability between the lesion and non-lesion

feature representations in spatial and channel dimensions, respectively. A multiscale

block is also used to aggregate the coarse-to-fine features of input skin images and re-

duce the effect of the artifacts. SLSNet is evaluated on two publicly available datasets:

ISBI 2017 and the ISIC 2018. Although SLSNet has only 2.35 million parameters,

the experimental results demonstrate that it achieves segmentation results on a par with

the state-of-the-art skin lesion segmentation methods with an accuracy of 97.61%, and

Dice and Jaccard similarity coefficients of 90.63% and 81.98%, respectively. SLSNet

can run at more than 110 frames per second (FPS) in a single GTX1080Ti GPU, which

is faster than well-known deep learning-based image segmentation models, such as

FCN. Therefore, SLSNet can be used for practical dermoscopic applications.

Keywords: Skin lesion segmentation, Generative adversarial network, 1-D kernel

factorized network, Position attention module, Channel attention module

1. Introduction

There are 1.04 million melanoma cases in 2018 in the world according to the World

Health Organization (WHO) 1. Over the last decades, the number of patients affected

by melanoma or non-melanoma skin cancers has been rapidly increased (Apalla et al.,

2017). With the growth of Artificial Intelligence techniques, computer vision and im-

age analysis techniques based on computerized non-invasive dermatology are essential

for dermatologists for early detection of malignant melanoma (Esteva et al., 2017) to in-

crease the survival rate and reduce the diagnosis/treatment cost. Therefore, a computer-

aided diagnosis (CADx) system is essential to support the dermatologists to explore the

images captured by digital dermatoscopes. The main challenges that face skin lesion

segmentation methods are: 1) the vast diversity in color, shape, texture, size, irregu-

1https://www.who.int/news-room/fact-sheets/detail/cancer
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lar, and fuzzy boundaries of lesions, 2) the presence of blood vessels and hairs, and

3) the low contrast between skin tissues (Al-Masni et al., 2018).In order to cope with

these challenges, several approaches have been presented by using traditional image

processing algorithms, such as histogram thresholding, unsupervised clustering, and

supervised segmentation methods. For more information, the work in (Celebi et al.,

2015) has presented a comprehensive survey for traditional segmentation techniques.

However, these approaches yield inaccurate segmentation results when the skin lesions

have fuzzy boundaries (Celebi et al., 2015). Besides, the performance of these methods

highly depends on applying different transformations algorithms for improving the in-

spected images, such as hair removal and contrast enhancement. With the tremendous

progress in the field of machine learning, mainly in deep learning techniques, many

skin lesion segmentation approaches have been introduced that increased the accuracy

of skin lesion segmentation. For instance, the SLSDeep model was proposed in (Sarker

et al., 2018) to segment the skin lesion by using feature pyramid pooling. In (Al-Masni

et al., 2018), a full resolution convolutional networks (FrCN) has been introduced to

directly learn the full resolution visual content of the input images without the need

to image processing assisted tools to refine them. Additionally, a generative adver-

sarial network (GAN) with an improved loss function, called SegAN, has also been

introduced for learning semantic features of skin lesions in multiscale image repre-

sentations (Xue et al., 2018). Besides, some lightweight image segmentation models

have been used for skin lesion segmentation, such as a lightweight model so-called

ENet (Paszke et al., 2016). However, it has yielded lower accuracy than state-of-the-art

lesion segmentation methods.

Although, some of the aforementioned methods have provided acceptable skin seg-

mentation precision, they have hundreds of million parameters that make them unsuit-

able for practical applications and cannot be easily transferred to clinical settings, espe-

cially with dermatoscopy devices with limited computational and memory resources.

Existing lightweight segmentation models like ENet give results lower than state-of-

the-art when applied to skin lesion segmentation. Therefore, there is a need for a

light-weight skin lesion segmentation model that can yield competitive results to the

methods in the literature. In this work, we propose a lightweight GAN model, named

3



MobileGAN, for segmenting melanoma in dermoscopic images. In MobileGAN, we

extract low-level skin lesion-relevant features with multiscale convolutional networks.

MobileGAN also adopts a 1-D kernel factorized network to minimize the computa-

tional cost and the resources. Moreover, we exploit the position and channel attention

mechanisms to promote skin lesion feature representations. Consequently, we can sum-

marize the main contributions of this work as follows:

• The main objective is to develop an efficient skin lesion segmentation at low

computational cost with keeping high precise segmentation competitive to state-

of-the-art models. Hence, we propose a lightweight and fully automatic skin

lesion segmentation model, called MobileGAN.

• A multiscale aggregation mechanism is introduced in MobileGAN to extract skin

lesions relevant features at different scale representations and cope with the vari-

ability of lesion shapes. In order to minimize the number of the trained param-

eters, the 1-D kernel factorized networks (Romera et al., 2018) are exploited

instead of the traditional 2D convolution networks.

• We adopt the position and channel attention mechanisms (Fu et al., 2018) to

capture the correlation between the channel and spatial features responses of the

proposed network and enhance the discriminant ability in between lesion and

non-lesion feature representations.

• We propose the use of binary cross-entropy, Jaccard index, and L1-norm to for-

mulate a loss function to address the challenges accompanied by artifacts exist-

ing in dermoscopic images.

The organization of this paper is as follows. Section II discusses recent skin le-

sion segmentation methods based on classical computer vision and deep learning tech-

niques. The architecture of the proposed model and the experimental results are ex-

plained in Section III and IV respectively. In turn, Section V presents a general discus-

sion about the study and its results. Finally, Section VI concludes and suggests some

ongoing and future lines of this research.
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2. Related work

Computer vision and machine learning researchers have presented many approaches

for skin lesion segmentation based on classical and deep learning techniques. Below,

we present and discuss the most common skin lesion segmentation methods.

Classical computer vision-based approaches: The traditional segmentation ap-

proaches are mainly include thresholding, active contour (Silveira et al., 2009), region

growing (Rahman et al., 2016), and unsupervised learning, e.g., clustering (Agarwal

et al., 2017) for melanoma segmentation. Adaptive thresholding and region growing

based methods are proposed in (Rahman et al., 2016) for skin lesion segmentation.

A machine learning technqiues, such as Support Vector Machine (SVM), are fed by

the segmented regions to classify the type of skin lesions. The thresholding-based ap-

proaches only yield good results with apparent boundaries, which is not a common

scenario in this task. Regarding to contour-based methods, such as adaptive snake

and active contours proposed in (Silveira et al., 2009), they have degraded with the

change the pigments or the presence of hair. Furthermore, they failed to discriminate

between the lesion and healthy skin, when the lesions have fuzzy boundaries. In turn,

the clustering-based methods are not efficient with complex dermoscopic images.

Deep learning-based approaches: Recently, convolutional neural networks (CNNs)

have been commonly applied for different tasks, such as image segmentation (Guo

et al., 2018), object detection (Zhao et al., 2019) and image classification (Rawat and

Wang, 2017). For image segmentation, several CNNs are presented at the last five

years. The fully convolutional network (FCN) (Long et al., 2015) based model made

the initial breakthrough, in which the encoder and decoder framework is employed for

the segmentation task. Later on, different variations of the autoencoder networks were

utilized for various segmentation tasks (Lateef and Ruichek, 2019). The U-Net model

prposed in (Ronneberger et al., 2015) outperformed state-of-the-art biomedical image

segmentation using a handful amount of data. In order to memorize the features from

first layers of the encoder and suppresses the singularities inherent in the loss of DC-

NNs The authors of (Ronneberger et al., 2015) also introduced a new concept called

skip connection, which features extracted by each encoder layer will be connected to
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the corresponding decoder layer .

Regarding skin lesion segmentation task, one of the well-known approaches pro-

posed for skin lesion segmentation is the fully convolutional residual network (FCRN) (Yu

et al., 2017) that yields a detailed and accurate skin lesion segmentation by learning

multiscale contextual features of the input image. Although FCRN gives good results,

some factors, such as low contrast dermoscopic images, the presence of hairs and irreg-

ular lesion shapes degrade the segmentation results. There are also several U-Net based

models proposed for skin lesion segmentation task. For instance, a self-ensemble U-

Net model proposed in (Li et al., 2018) with a transformation that improved the effects

of regularization by using the unlabeled data, achieving an Intersection over Union

(IoU) score 79.87% on the ISBI 2017 test dataset. In (Bissoto et al., 2018), the authors

proposed to use image processing tools to remove noise from the input dermoscopic

images, and then the refined image fed to a U-Net based model to segment skin lesions,

achieving an IoU score of 72.8% on the ISIC2018 dataset. In (Vesal et al., 2018), a

network called SkinNet has been proposed. Where the densely connected convolution

layers are the core of the layers of SkinNet, which yielded an IoU score of 76.7% on

the ISBI 2017 test dataset. In the SLSDeep model (Sarker et al., 2018), a deep net-

work has been proposed via using dilated residual convolution layers with a pyramid

pooling network to extract contextual features from multiscale representations of a der-

moscopic image. Besides, a combination of negative Log-likelihood and endpoint error

functions has been used as a loss function to improve the boundaries of the segmented

lesions. SLSDeep obtained an IoU score of 78.2% on the ISBI 2017 dataset. In turn,

several FCN-based approaches are also applied to skin lesion segmentation. For ex-

ample, a skin segmentation model based on the FCN architecture has been presented

in (Bi et al., 2019) that with the ISBI 2017 dataset it provided an IoU score of 77.73%.

Besides, a full-resolution convolutional network (FrCN) was introduced in (Al-Masni

et al., 2018) yielded an IoU score of 77.11% on the ISBI 2017 dataset. Regarding

skin lesion segmentation, several methods based on GANs have been proposed. For

instance, (Xue et al., 2018) has presented a GAN-based model that depened on ResNet

blocks with skip connections. With the ISBI 2017 test dataset, it achieved an IoU

score of 78.50%. In (Bisla et al., 2019), a two-stream deep convolutional generative
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adversarial network with the ResNet-50 model, was proposed to jointly segment and

classify skin lesions. In this study for removing the artifacts from the lesion images,

the authors have used different pre-processing techniques. The work in (Bisla et al.,

2019) has provided IoU scores of 77.00% and 70.20%, respectively on ISBI2017 and

ISIC2018 datasets.

GAN-based approaches: In the literature, several lightweight models have been

proposed for different applications, such as object detection and image segmentation.

For instance, in (Sae-Lim et al., 2019), DCNNs and the MobileNets have been used for

skin image classification. The MobileNets model (Howard et al., 2017) was tested with

use cases including object detection, fine-grain classification, face attributes, and large

scale geo-localization. MobileNets is based on depth-wise separable convolutions. It

has around 4 million parameters, while object detection models, such as YOLO-V3

and Mask-RCNN, have about 60 and 40 million parameters, respectively. These object

detection models have been used in some skin lesion segmentation models to detect the

region of the lesion or to provide initial segmentation results. In (Mishra and Daescu,

2019), a two-step method was proposed for the analysis of skin lesions that accepts

dermoscopic as well as cellphone images. Firstly, Mask-RCNN based on ResNet152

has been used to obtain an initial segmentation. Secondly, to refine the segmentation

results, the initial segmentation has been fed to a superpixel segmentation method. The

method proposed in (Mishra and Daescu, 2019) has provided accurate segmentation,

however it is still a heavy model, since it exploits the ResNet152 backbone that has

60.2 million parameters. Also, YOLO and the GrabCut algorithm have been combined

in (Unver and Ayan, 2019) for skin lesion segmentation with a Dice score of 84.26 and

a Jaccard score of 74.81 on ISBI 2017 dataset. However, these scores have considered

much lower than the results of the state-of-the-art, such as SLSDeep that achieved a

Dice score of 87.80 and a Jaccard score of 78.20. In turn, in (Paszke et al., 2016),

an efficient deep neural network named ENet for real-time segmentation with small

number of parameters of 1 million have been introduced. Enet has produced a Dice

score of 82.70 and a Jaccard score of 74.10 with ISBI 2017.

Attention mechanism-based approaches: Recently, attention mechanisms have

been used in DCNNs (Mnih et al., 2014), (Wang et al., 2017), (Chen et al., 2016).
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Attention mechanisms help DCNNs to pay more attention to the components with

more enriched information. To that so, using trainable layers, the current convolu-

tional features are weighted by multiplying with learned soft weight vectors to pro-

duce channel-wise features, which yield useful features and suppressed the redundant

ones. As the attention mechanism focuses on relevant information in the collection of

extracted features, it encourages DCNNs to learn faster with merely a small training

dataset. In (Chen et al., 2016), an attention mechanism for softly weighting the mul-

tiscale features at each pixel location has been proposed. This attention mechanism is

able to capture the key features at different scales and positions. In (Schlemper et al.,

2018), the use of a generalized self-gated soft-attention mechanism allows the convo-

lutional layers to contextualize local features. This mechanism can be combined with

existing deep learning segmentation or classification models while adding few trainable

parameters. For medical image analysis, (Oktay et al., 2018) has proposed an attention

gate model that is able to determine the structures of lesions with different shapes and

sizes. It can promote the task-relevant salient features and neglect irrelevant regions in

the input images. Besides, (Mnih et al., 2014) has presented a visual attention mech-

anism, which can be cable of finding the salient regions and processing them at high

resolution.

Indeed, most of the skin lesion segmentation methods, as mentioned above, use

profound models having a massive amount of parameters, which leads to reduce the po-

tential impact of these methods on daily clinical practice. Besides, these heavy methods

can not be used for real-time applications running on low resources embedded systems

(e.g., mobiles). To address this issue, we propose MobileGAN, which is a lightweight

and efficient GAN-based model. The number of parameters of any segmentation model

depends on several factors, such as the number of convolutional layers used, image size

of the input layer, fully connected layers. Unlike the related work, the MobileGAN

model proposes a novel layer, factorized-attention module (FCM), which combines

two branches: residual 1-D factorized kernel convolution (factorized layer) and chan-

nel attention module. In the FCM, convolution is computed in a fashion that reduces

the overall number of computational parameters. We employ a multiscale aggrega-

tion mechanism to extract skin lesions-relevant features at different scales to be able
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to segment of skin lesions of various shapes and sizes. Besides, to encode contextual

information into local features, both position attention module (PAM) and channel at-

tention module (CAM) are utilized in order to accurately distinguish skin lesions from

the healthy skin through the localized texture information. Notably, CAM and PAM

can facilitate the training process of the model, since they encourage the model to learn

skin-lesion relevant features. They also will not affect the number of the parameters of

the training model.

3. Methodology

In this section, we describe in details the network architecture and its developed lay-

ers. In this work, our baseline network is GAN. The GAN, pix2pix, proposed in (Isola

et al., 2017) has been applied to different medical applications, such as medical im-

age segmentation and classification. In general, two main network are the core of

GAN, namely the generator G and discriminator D. The generator consists of an au-

toencoder architecture (i.e., encoder and decoder networks), which can be trained to

learn the mapping from an image from domain A (dermoscopic images) to domain B

(segmented lesions). The discriminator is used to compare the generated segmentation

masks with real segmented images. Figure 1 presents the architecture of the proposed

model, which has G and D networks as the pix2pix model. A multiscale block is used

for aggregating the coarse-to-fine features of dermoscopic images to alleviate false de-

tection due to the artifacts. The encoder and decoder parts of the generator and the

discriminator networks are explained in detail in the next subsections.

3.0.1. The Encoder Network

Firstly, three scaled images are generated from the input images with the ratios of

1/8, 1/4, and 1/2 of the original size for the encoder of generator network G, as shown

in Figure 1. This will help MobileGAN to be invariant to image resolution by deal with

of object, and images in different resolutions and scales. These types of scale-invariant

filters capture small pixels that can help to properly segment tiny skin lesions. In the

multiscale block, four 3×3 convolutional filters are then applied and followed by four

CAMs to capture visual features dependencies in channel dimensions (more details
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Layer
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Predict

30x30

1

Sigmoid

Figure 1: The architecture of MobileGAN: generator network (top) and discriminator network (bottom).

are given below). The aggregated module is fed with four sizes of the features maps

from up to down are 128× 128× 16, 64× 64× 16, 32× 32× 16, and 16× 16× 16,

respectively. Afterward, the three lower-scale features are upsampled to the same size

of the original input image by using the bilinear interpolation method and then average

the four feature maps to generate a 128×128×16 feature map.

The aforementioned multiscale strategy helps the encoder to extract low level fea-

tures in different scales to cope with shadows. Besides, the resulted feature maps are

created in both spatial and channel domains. The resulted 16 feature maps are fed into

two downsampling-attention layers. Each downsampling-attention layers comprises a

convolutional layer followed by a max-pooling of 2, and then a position attention mod-

ule (PAM) to capture the spatial features. The two layers produce 64 feature maps that

are fed into the next four factorized-attention module (FCM). Each FCM includes a 1-D

kernel factorized layer followed by a CAM. A downsampling-attention layer feeds by

the resulting feature maps to produce 128 feature maps that are fed into the next eight

FCM. The result of the eighth FCM is fed into a 1-D kernel factorized layer followed

by two parallel attention blocks: one for CAM and the other for PAM that is summed

to capture visual features independently to position and channel dimensions. In the

end of the encoder, the final 128 feature maps are fed into the decoder to construct the

segmented image determining the boundaries of skin lesions.

Channel attention module (CAM): The feature maps consists of a set of chan-

nels that each one can be noted as a class-specific response representing high-level
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features. However many semantic responses (i.e. channels) are correlated with each

other. Consequently, in this module by Using the inter-dependencies among channel

maps, we can highlight inter-dependent feature maps and update the feature represen-

tation of specific interpretation. Thus, a channel attention module is built to model

inter-dependencies among channels explicitly. Figure 2 shows the composition of the

channel attention module. The channel attention map X ∈ RC×C calculated from the

original features A ∈ RC×H×W directly calculates from the position attention module,

where C, H and W are channels, height and width of the input image, respectively .

Clearly, A is reshaped to RC×N , where N = H×W is the number of features. A matrix

multiplication between A and the transpose of A is then performed. Finally in order to

generate the channel attention map X∈RC×C, a softmax function is applied as follows:

x ji =
exp(Ai ·A j)

∑
C
i=1 exp(Ai ·A j)

, (1)

where x ji calculates the ith channel impact on the jth channel. Besides, matrix

multiplication is performed between the transpose of X and A. The result of the multi-

plication is reshaped to RC×H×W that is then multiplied by a scale parameter γ and per-

formed an element-wise addition operation with A to get the final output E ∈RC×H×W

as follows:

E j = γ

C

∑
i=1

(x jiAi)+A j, (2)

where γ continuously learns a weight from 0. The final feature of each channel is

a weighted sum of the features of all channels and original features, which models the

long-range semantic dependencies between feature maps as shown in the Equation 2.

Thus, it is obvious that CAM is able highlight class-dependent feature maps and dis-

criminatively supports a feature boost that can be not produced by the convolution

layers.

Position attention module (PAM): To get accurate skin lesion segmentation, dis-

criminant feature representations are essential that can be achieved by capturing long-

range contextual information. Thus, in MobileGAN, we exploit a position attention

module to model strong contextual links over local feature descriptions. A comprehen-

sive series of contextual information into local features can be encoded by the position
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A.

Figure 2: Channel attention module (CAM) architecture.

B.

Figure 3: Position attention module (PAM) architecture.

attention module. Ultimately, the spatial context is refined by aggregating the spatial

features. Given a local feature A∈RC×H×W that is fed to into a convolution layers with

batch normalization and ReLU to produce two new feature maps B and C, respectively,

where {B,C} ∈ RC×H×W shown in Figure 3. We then resize them to RC×N , where

N = H ×W is the number of features. Finally, a matrix multiplication between the

transpose of C and B is performed, and to estimate the spatial attention map S ∈RN×N

a softmax function S is applied:

s ji =
exp(Bi ·C j)

∑
N
i=1 exp(Bi ·C j)

, (3)

where s ji means the ith position’s contact on jth position. Consequently, we can say

that a softmax function S attempts to find the correlation between two spatial positions

in the input feature maps. Afterwards, the feature A is fed into a convolutional layer

with batch normalization and ReLU to create a new feature map D ∈ RC×H×W that

is resized to RC×N . Matrix multiplication between D and the transpose of S are then

performed to have new feature maps belonging RC×H×W . Eventually, a multiplication
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Figure 4: 1-D Factorized-attention module (FCM) architecture.

operation by a scale parameter η and an element-wise addition operation are performed

with the features A to get the final output E ∈ RC×H×W as follows:

E j = η

N

∑
i=1

(s jiDi)+A j, (4)

where η is initialized as 0 as defined in (Zhang et al., 2018). Based on (4), the

resulting feature E at every position is a weighted sum of the features of the complete

neighbours of original features. Thus, it is obvious that the position attention mod-

ule can yield a global contextual representation and selectively aggregate the context

according to a spatial attention map by generating related semantic features that can

achieve mutual gains and improve intra-class semantic consistency.

Factorized-attention module (FCM): For reducing the computation complexity,

MobileGAN use residual 1-D kernel factorized layer. We assume that the weights of a

typical 2D convolutional layer is indicated by W∈RC×dh×dv×F , where C is the number

of input planes, F is the number of output planes (feature maps) and dh×dv indicates

to the kernel size of every feature map (typically dh ≡ dv ≡ d). Let b ∈ RF be the

vector denoting the bias term for every filter and fi ∈ Rdh×dv
indicates the ith kernel of

a layer. Thus, the rank-1 constraint can be rewritten, fi, as a linear combination of 1D

filters:

fi =
K

∑
k=1

σ
i
kv̄i

k
(
h̄i

k
)T

, (5)

where σ i
k is a scalar weight and K is a rank of fi, in turn the length of vectors, v̄i

k and(
h̄i

k

)T is d. Thus, the ith output of the decomposed layer, a1
i , is expressed as a function

of its input a0
∗:

a1
i = ϕ

(
bh

i +
L

∑
l=1

h̄T
il ∗
[

ϕ

(
bv

l +
C

∑
c=1

v̄lc ∗a0
c

)])
, (6)

where the function, ϕ(.), can be represented by non-linearity of the 1D decomposed

filters, which can be implemented with ReLU. Finally, to get the final representation
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of the FCM, the output feature maps from 1-D kernel factorized layer is fed to the

channel attention module. the architecture of the factorized-attention module used in

MobileGAN is shown in Figure 4.

3.0.2. The Decoder Network

The final output from the last encoding layer fed into a upsample-attention layer

which consists of a deconvolutional layer with PAM block. Afterwards, the resulted

output fed into two consecutive FCM. Again, another upsample-attention layer with

two sequential FCM are used to achieved the final feature maps. Finally, the final

feature maps is upsampled in order to obtain the segmented image. In order to convert

the output to binary masks, a threshold of 0.5 is utilized. In all layers of both encoder

and decoder networks, convolutional and deconvolutional filters with a kernel size of

3×3, and a stride of 2 with a padding of 1 are used.

3.0.3. The Discriminator Network

It includes four downsampling layers. The First three layers are convolutional lay-

ers with a kernel size of 4×4, a stride of 2, and a padding of 1. Besides, a PAM block is

used to the second downsampling layer, while in the third layer, a CAM block is added.

However, in the final layer, a sigmoid activation function is utilized to discriminate the

generated binary mask versus real one.

3.1. Model training

In MobileGAN, back-propagation in an adversarial fashion is used for alternately

training the G and D networks. Firstly, by using the gradients computed from the loss

function and with fixing G, we train the D network for one time. We then fix the D

network and train the G network for another time by using the gradients computed

from the same loss function passed from D to G. Assume a skin lesion image is x, and

the ground-truth of the segmented image is y. Let z is a random variable that can be

introduced as a dropout in the layers of the decoder, which helps to avoid overfitting of

the model and generalize the learning process. Thus, the outputs of the generator and

the discriminator can be expressed as G(x,z) and D(x,G(x,z)), respectively. Conse-

quently, we can define the loss function of the generator G including three main error
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functions: binary cross entropy loss, L1 norm to reduce the outliers, and Jaccard loss to

increase the intersection between the segmented images and the ground-truth images:

`Gen(G,D) = Ex,y,z(− log(D(x,G(x,z))))

+λEx,y,z(`L1(y,G(x,z)))

+αEx,y,z(`Jaccard loss(y,G(x,z))),

(7)

where λ and α are empirical weighting factors. In many cases, the adversarial

loss term yields too slow learning, thus MobileGAN uses the L1 loss for boosting the

learning process by properly formulating the gradient towards the expected segmented

lesion boundaries. In addition, we consider the optimization of the Jaccard loss for

the lesion classes. Let Gt be the hand drawn ground truth of the lesion region, and Pd

its respective computer-generated segmentation mask, then the binary Jaccard loss is

based on the Jaccard distance defined as follows (Yuan, 2017):

dJ(Gt,Pd) = 1− J(Gt,Pd) = 1− (Gt ∩Pd)
|Gt|+ |Pd|− |Gt ∩Pd|

. (8)

A non-differentiable function dJ(Gt,Pd) can be introduced for loss minimization;

however, it is not easy to directly apply such function for back-propagation. In order to

generate a binary mask from continuous MobileGAN output for each iteration during

optimization and to reduce the computation cost, we use the Jaccard loss function that

can be defined as:

LdJ = 1− ∑x,y(gxy, pxy)

∑x,y g2
xy +∑x,y p2

xy−∑x,y(gxy pxy)
, (9)

where gxy and pxy are the pixel values at (x,y) in a ground-truth and predicted mask,

respectively. To balance the pixels of lesion regions and background, a weight map is

used; however, it is not the case for the defined Jaccard loss, since the Jaccard loss

function is differentiable:

JL =
δLdJ

δLpxy

=−
gxy[∑x,y g2

xy +∑x,y p2
xy−∑x,y(gxy pxy)]

[∑x,y g2
xy +∑x,y p2

xy−∑x,y(gxy pxy)]2

+
(2px,y−gxy)[∑x,y(gxy pxy)]

[∑x,y g2
xy +∑x,y p2

xy−∑x,y(gxy pxy)]2
.

(10)

During network training, the Jaccard loss can be efficiently integrated into the

back-propagation. If the generator network is optimized correctly, the values of D(x,G(x,z))
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approach 1.0, which means that the discriminator cannot differentiate the generated

segmentation mask from the ground truth. In such a case, L1 and Jaccard losses should

approach 0.0, indicating that each generated mask matches the corresponding ground

truth mask both in overall pixel-to-pixel distances (L1) and in tight convex surrogate

(Jaccard loss) to all intersection-over-union (IoU). Thus, the loss function of the dis-

criminator D can be defined as follows:

`Dis(G,D) = Ex,y,z(− log(D(x,y)))

+Ex,y,z(− log(1−D(x,G(x,z)))).
(11)

In (11), There are two terms to compute the binary cross-entropy (BCE) loss us-

ing two images: the term − log(D(x,y)) for ground truth images, and the other one

− log(1−D(x,G(x,z)) for the predicted image. The optimizer fits D by maximizing

the loss values for the ground-truth images and minimizing the loss values for the

predicted images. We assume that the expected class for ground truth and generated

images are 1 and 0, respectively

4. Experiments

Datasets: The efficacy of the proposed model, MobileGAN, is assessed on two

publicly available datasets of dermoscopic images for skin lesion analysis: IEEE Inter-

national Symposium on Biomedical Imaging, (ISBI 2017) and Skin Lesion Analysis

Towards Melanoma Detection, grand challenge datasets (ISIC 2018) 2. ISBI 2017

dataset was divided into training, validation, and testing sets with 2000, 150, and 600

images, respectively. In turn, the ISIC 2018 dataset includes 2,594 images with the cor-

responding ground truth masks annotated by expert dermatologists. The validation and

testing sets contain 100 and 1,000 images, respectively, without ground truth (evaluated

on the ISIC2018 validation leaderboard 3 only). In our experiments, we used 80% of

the training set of the ISIC 2018 dataset for training the segmentation models and 20%

for validation, as proposed in (Al-Masni et al., 2018). Note that we trained, validated,

and tested MobileGAN individually on the ISBI 2017 and ISIC 2018 datasets.

2https://challenge.isic-archive.com
3https://challenge.isic-archive.com/
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Evaluation metrics: In this paper, we use five evaluation metrics to evaluate the

performance of MobileGAN. With the ISBI 2017 dataset, we use Jaccard similarity

coefficient (JSC), Dice similarity coefficient (DSC), accuracy (ACC), specificity (SPE)

and sensitivity (SEN) ISIC (2018). For both the ground-truth y and the predicted image

x, the true positive (TP) rate can be defined as T P = y∩ x, which is the area of the

segmented region common in both x and y. The false positive (FP) rate can be defined

as FP = y∩x, which is the segmented area not belonging to y. The false-negative (FN)

rate is defined as FN = y∩ x, which is the actual area missed in the predicated image.

The true negative (TN) set can be defined as T N = y∩ x, which is the set of image

background common in both x and y. Below, we present the mathematical expressions

of the five metrics: ACC, DSC, JSC, SEN and SPE.

ACC =
T P+T N

T P+T N +FP+FN
(12)

DSC =
2.T P

2.T P+FP+FN
(13)

JSC =
T P

T P+FP+FN
(14)

SEN =
T P

T P+FN
(15)

SPE =
T N

T N +FP
(16)

The predicted lesion masks of the ISIC 2018 challenge are assessed using a threshold

JSC (JSCth) (Codella et al., 2019). Through comparing each pixel of the predicted

image to its corresponding pixel in the ground-truth mask, the JSC for each test image

is calculated. Thus, the JSCth can be computed as follows:

JSCth =

JSC if JSC  0.65,

0 otherwise.
(17)

where the images with JSC < 0.65 will be given a score of 0.
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Data augmentation: We augment the two datasets by flipping the images horizon-

tally and vertically, applying gamma reconstruction, and changing the contrast using

adaptive histogram equalization (CLAHE) with different values on the original RGB

images. We increased the total number of training images to 16000 and 16600 after

applying the data augmentation on ISBI 2017 and ISIC 2018 train dataset.

Implementation: To train the network, our experiments were carried on NVIDIA

1080Ti with 11GB memory taking 8 hour. We implemented The proposed model on

the PyTorch framework 4. Besides, the Adam optimizer (Kingma and Ba, 2014) with

the parameters β1 = 0.5 and β2 = 0.999 was used. We set the learning rate to 0.0002

and the batch size is set to 8. We also set the weighting factors of L1-norm loss and

Jaccard loss (λ and α) to 0.1 and 0.5, respectively.

Experimental results: For ISBI 2017 and ISIC 2018, the size of the images ranges

from 542× 718 to 2848× 4288 considered very large to train the proposed model.

Thus, to speed up the training process, we resized the input images to H×W pixels,

where H and W are height and width of the image fed to the network. For select the

best of the image size yielding the best accuracy, we trained and tested our model with

three image sizes (64× 64, 128× 128 and 256× 256). The best segmentation results

are obtained with the input size of 128×128 (ablation study is given below).

In Table 1 and Table 2, quantitative results of the proposed model on ISBI 2017 test

and ISIC 2018 validation sets are shown. In Table 1, we compared the MobileGAN

with eight skin lesion segmentation methods: FCN (Long et al., 2015), U-Net (Ron-

neberger et al., 2015), SegNet (Badrinarayanan et al., 2017), FrCN (Al-Masni et al.,

2018), SLSDeep (Sarker et al., 2018), SegAN (Xue et al., 2018), YOLO+grabcut (Un-

ver and Ayan, 2019) and ENet (Paszke et al., 2016) using ISBI 2017 test dataset. We

took all the test results of FCN, U-Net, SegNet, FrCN from (Al-Masni et al., 2018)

that used the same dataset. Table 1 shows that MobileGAN can outperform the all

tested methods in terms of ACC, DSC, JSC, and SPE metrics. MobileGAN yields

the ACC and JSC of 97.61% and 81.98%, which is 3.51% and 3.48% higher than the

ACC and JSC of the second-best (segAN) method. Similarly, it yields the DSC and

4https://pytorch.org/
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Table 1: A comparison between the proposed model and 6 skin lesion segmentation methods on the ISBI

2017 dataset (test set) in terms of the accuracy and number of parameters in million (Params(M)).

Methods ACC DSC JSC SEN SPE Params(M)

FCN (Long et al., 2015) 92.72 83.83 72.17 79.98 96.66 134.3

U-Net (Ronneberger et al., 2015) 90.14 76.27 61.64 67.15 97.24 12.3

SegNet (Badrinarayanan et al., 2017) 91.76 82.09 69.63 80.05 95.37 11.50

FrCN (Al-Masni et al., 2018) 94.03 87.08 77.11 85.40 96.69 16.30

SLSDeep (Sarker et al., 2018) 93.60 87.80 78.2 81.60 98.30 46.65

SegAN (Xue et al., 2018) 94.10 86.70 78.50 - - 382.17

YOLO+grabcut (Unver and Ayan, 2019) 93.39 84.26 74.81 90.82 92.68 -

ENet (Paszke et al., 2016) 92.0 82.7 74.1 - - 0.36

Proposed MobileGAN 97.61 90.63 81.98 87.81 99.92 2.35

SPE of 90.63% and 99.92%, which is 2.83% and 1.62% higher than the DSC and SPE

of the second-best (SLSDeep) method. In turn, the YOLO+grabcut yields the SEN of

90.82%, which is 3.01% higher than the MobileGAN. MobileGAN has a small number

of parameters (2.35 million parameters) compared to all other methods except ENet.

Although ENet is a lightweight model (0.36 million parameters), its segmentation re-

sults are worse than MobileGAN.

Regarding the ISIC 2018 validation dataset, we compared MobileGAN with the

FCN, U-Net, SegNet, FrCN, GAN-FCN, Rcnn-superpixels, Mask R-CNN models, as

shown in Table 2. Note that the ISIC 2018 dataset includes 100 images for validation

Table 2: Evaluating the proposed MobileGAN model on the ISIC 2018 validation dataset in terms of the

JSCth and number of parameters in million (Params(M)).

Methods JSCth Params(M)

FCN (Long et al., 2015) 74.70 134.30

U-Net (Ronneberger et al., 2015) 54.40 12.30

SegNet (Badrinarayanan et al., 2017) 69.50 11.50

FrCN (Al-Masni et al., 2018) 74.60 16.30

GAN-FCN (Bi et al., 2018) 77.80 10.61

Rcnn-superpixels (Mishra and Daescu, 2019) 83.00 -

Mask R-CNN (Sivanesan et al., 2019) 78.80 -

Proposed MobileGAN 78.40 2.35
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Figure 5: The rank of MobileGAN on the ISIC 2018 leaderboard challenge (screenshot). The proposed

MobileGAN is highlighted.

and 1,000 images for testing, without ground truth. However, the evaluation is only

done on the ISIC 2018 validation leaderboard. We used the validation evaluation of

FCN, U-Net, SegNet, FrCN from the literature (Al-masni et al., 2018). The proposed

MobileGAN model achieves the highest JSCth score compared to the GAN-FCN and

FrCN with an improvement of 0.6% and 3.8%, respectively. Notably, MobileGAN has

a number of parameters much lower than all compared models.

In addition, we compared our model, MobileGAN, with the six segmentation mod-

els (i.e., the FCN, U-Net, SegNet, FrCN, SegAN, and GAN-FCN) in terms of the

number of the parameters. The MobileGAN model has only 2.35 million parameters,

while the GAN-FCN model (the closest one) has 10.61 million parameters. In turn, the

SegAN model that is based on the traditional GAN model is the heaviest model with

382.17 million parameters. We emphasize that the exploitation of 1-D kernel, PAM

and CAM significantly reduces the number of parameters of the proposed model, Mo-

bileGAN, which has 57x, 5x, 4x, 6x, and 19x times lower parameters than the FCN,

U-Net, SegNet, FrCN, and SLSDeep models, respectively. The rank of MobileGAN

with the validation set of the ISIC 2018 challenge is shown Figure 5. Note that the

proposed model is highlighted, and has the title MobileGAN and submitted by IRCV

on 17th of May 2019. It has been ranked on the 6th position at the time of submis-

sion. The models preceding MobileGAN on the leaderboard (rank 1 to 5) are using

different networks; however, their baseline models are the same as residual networks

(i.e., ResNet) (He et al., 2016), noting that the number of parameters of ResNet-50 is
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Figure 6: Segmentation results of MobileGAN: (a) input image (b) ground truth (c) left: accurately seg-

mented lesions (c) right: incorrectly segmented lesions

23 million. In other words, the number of parameters of these models is higher than

MobileGAN. In turn, Figure 5 and Table 2 show that the Mask R-CNN (Sivanesan

et al., 2019) and Rcnn-superpixels (Mishra and Daescu, 2019) models achieve JSCth

a bit higher than MobileGAN, however the authors of Mask R-CNN (Sivanesan et al.,

2019) and Rcnn-superpixels (Mishra and Daescu, 2019) models did not mention the

number of parameters of each model. As shown, both Mask R-CNN (Sivanesan et al.,

2019) and Rcnn-superpixels (Mishra and Daescu, 2019) exploit the ResNet 101 back-

bone. Since the number of parameters of ResNet 101 is 44.5 million, and the Mask

R-CNN and Rcnn-superpixels models are much heavier than MobileGAN. As shown,

MobileGAN is a lightweight model and achieves competitive skin segmentation results

when compared to state-of-the-art segmentation models.

Qualitative segmentation results of the MobileGAN model with some examples of

the ISBI 2017 test dataset are shown in Figure 6. As shown in Figure 6 (left), although

the tested images have a high similarity between the color of the lesion and the skin

regions, fuzzy boundaries and even tiny lesions, the MobileGAN model accurately

segments the boundary of each skin lesion with an accuracy of about 95%. In Figure 6

(right), the shown examples have tiny skin regions (i.e., the background) compared to

lesion regions. The lesion regions fill most of the image and intersect three margins

of the images. In these cases, MobileGAN yields inaccurate segmentation because it

is a bit difficult to segment the boundaries of skin lesions accurately when there is no
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Table 3: Comparison between the inference times of MobileGAN (a lightweight architecture) and GAN-FCN

at different image resolutions.

Model
64x64 128x128 256x256

ms fps ms fps ms fps

GAN-FCN (Bi et al., 2018) 9 120.64 14 87.62 21 57.15

Proposed MobileGAN 5 168.71 8 110.3 14 78.63

proper boundary between the lesion and healthy skin tissue. In such cases, it is hard

for any segmentation model to precisely delineate the shape of the lesion region to get

an acceptable segmentation.

In Table 3, the inference time of MobileGAN was compared to GAN-FCN (Bi

et al., 2018), which is a lightweight architecture, at different scales on input images

(64× 64, 128× 128 and 256× 256). With 128× 128 image scale, the inference time

of MobileGAN achieves is 8 ms (110 FPS) on a single GTX1080Ti GPU, while GAN-

FCN takes 6 ms more than MobileGAN with the same configurations. As we can see,

MobileGAN achieves FPS higher than GAN-FCN at all scales of input images. In

summary, MobileGAN is faster than the compared skin lesion segmentation models

while having significantly better accuracy. Based on the computed inference time, it

is obvious that the proposed MobileGAN model canbe run on a single Mobile GPU

producing real-time and accurate skin lesion segmentation.

Results from the different variations of proposed model: We assessed the effect

of the addition PAM and CAM blocks on the baseline GAN model with and without

the multiscale block. Firstly, we assess the baseline GAN segmentation model (BL

GAN). The G network of BL GAN includes sequentially stacked factorized kernels in

all convolution and deconvolution layers. As shown in Table 4, BL GAN obtains DSC

and JSC scores of 83.61% and 72.93%, respectively. Secondly, we add the PAM block

to the BL GAN model (named as BL+PAM). Specifically, in the BL+PAM model,

we added a PAM module after each downsampling and upsampling layers of both the

encoder and decoder parts. We have also added a PAM module after the first down-

sampling layer in the discriminator network. The BL+PAM model obtains DSC and

JSC scores of 86.01% and 75.96%, respectively. Thirdly, we add the CAM block to
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Table 4: Different configurations of MobileGAN with the ISBI 2017 test dataset (bold refers to the top

values).

Methods ACC DSC JSC SEN SPE

BL GAN 95.63 83.61 72.93 79.42 96.91

BL+PAM 96.72 86.01 75.96 82.48 98.40

BL+CAM 96.90 87.23 76.65 83.31 99.10

BL+PAM+CAM w/o MS 97.25 88.87 78.76 85.49 99.59

MobileGAN 97.61 90.63 81.98 87.81 99.92

the BL GAN model (BL+CAM). In the BL+CAM model, we added a CAM module

after each factorized layer in the G network. We also added a CAM module after the

second downsampling layer in the discriminator network. The BL+CAM model gives

DSC and JSC scores of 87.23% and 76.65%, respectively. As we can see, the scores

of BL+CAM are better than BL+PAM. Indeed, the addition of the CAM mechanism in

the BL GAN model provides an efficient feature discriminability between skin lesion

regions and normal skin region in the skin image.

Furthermore, we add the PAM and CAM blocks to the BL GAN model without

multiscale (BL+CAM+PAM w/o MS). This model obtains DSC and JSC scores of

88.87% and 78.76%, respectively. As shown in the last row of Table 4, the addition

of the multiscale, PAM, and CAM blocks to the BL GAN improves the DSC and JSC

scores to 90.63% and 81.98%, respectively. This last variation is the proposed Mobi-

leGAN model. Table 4 demonstrates MobileGAN outperforms all BL GAN variations

in terms of the five metrics. Note that the all tested models are trained and tested with

an input image of 128×128.

In general, the most of the related deep learning-based segmentation models down-

sample the input images to avoid the high computation of the deep models. For ex-

ample, FrCN used an input image of 192× 256, and SLSDeep used an image of

384× 384. We demonstrate the effect of different resolutions of the input images

(64×64, 128×128, and 256×256) on the performance of the proposed MobileGAN

model in Table 5. With the image size 64× 64, the last layer of MobileGAN gener-

ates an 8×8 feature maps that yields very coarse level information, in which most of
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Table 5: The performance of MobileGAN with different input image resolutions of the ISBI 2017 test dataset.

Input size ACC DSC JSC SEN SPE

64x64 94.44 87.59 77.76 84.16 95.36

128x128 97.61 90.63 81.98 87.81 99.92

256x256 96.72 89.72 79.49 86.36 98.21

the important details are lost leading to low segmentation accuracy. With image size

256× 256, the last layer of MobileGAN generates a feature map of 32× 32, which

also extracts skin lesions-irrelevant features (i.e., artifacts) that reduces the overall ac-

curacy. In turn, the image size of 128× 128 generates a 16× 16 feature map at the

last layer that retains skin lesions-relevant features and discards the irrelevant ones to

achieve the best accuracy in terms of all metrics. Since our main goal is to achieve a

lightweight model with keeping accurate skin segmentation results, we used the image

size of 128×128 to train MobileGAN.

Table 6 shows the effect of different loss function variations on the performance of

MobileGAN. MobileGAN+BCE, MobileGAN+BCE+L1, MobileGAN+BCE+Jaccard

and MobileGAN+BCE+L1+Jaccard loss obtain incremental JSC scores of 74.48%,

76.80%, 79.88% and 81.98%, respectively. The proposed loss function shows sig-

nificant improvement in terms of the five evaluation metrics. The use of the L1-loss

function yields a reduction in the sensitivity to the choice of outliers. In turn, the use of

Jaccard loss permits the MobileGAN to detect subtle abnormalities that cross-entropy

loss did not detect. The combination of BCE+L1+Jaccard Loss with the proposed Mo-

Table 6: Effect of different loss functions of on the performance of MobileGAN with the ISBI 2017 test

dataset.

Loss ACC DSC JSC SEN SPE

MobileGAN+BCE 95.32 85.11 74.48 83.71 98.02

MobileGAN+BCE+L1 96.90 87.26 76.80 85.05 99.30

MobileGAN+BCE+Jaccard Loss 96.97 89.56 79.88 86.90 99.49

MobileGAN+BCE+L1+ Jaccard Loss 97.61 90.63 81.98 87.81 99.92
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BCE BCE+L1 BCE+JSC BCE+L1+JSCInput

Figure 7: Effects of different loss functions with MobileGAN on the test set of ISBI2017. Note that D and J

refer to DSC and JSC, respectively.

bileGAN decreases the number of false positives from the segmented mask remarkably.

In Figure 7, we present a couple of difficult samples from the ISBI 2017 dataset. We

present the DSC and JSC scores on each mask, noting that D and J refer to DSC and

JSC, respectively. The BCE+L1+Jaccard loss provides a JSC score of 95.74% and

97.71% with the upper and lower examples of Figure 7, respectively. This analysis re-

veals the proposed loss function (BCE+L1+Jaccard loss) yields a better improvement

at pixel-level in the segmentation result.

5. Conclusions

A lightweight and efficient GAN model for skin lesion segmentation, called Mo-

bileGAN, has been proposed in this paper. MobileGAN has been built by adapting a

GAN model that comprises 1-D kernel factorized networks, multiscale aggregation, po-

sition, and channel attention mechanisms. MobileGAN has been assessed on the ISBI

2017 test and ISIC 2018 validation datasets. On the ISBI 2017 test dataset, it yields

precise segmentation results with accuracy, sensitivity, specificity, Dice coefficient and

Jaccard index, of 97.61%, 87.81%, 99.92%, 90.63%, and 81.98%, respectively. Mobi-

leGAN achieves a threshold JSC score of 78.4% with the ISIC 2018 validation dataset.

Comparing to the state-of-the-art, the number of parameters of MobileGAN has been

significantly reduced, with only 2.35 million parameters. In future work, we will im-
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plement a mobile application based on the MobileGAN model to segment skin lesions

in images captured by low-resolution cameras.
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