toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Mohammad Ali Bagheri; Qigang Gao; Sergio Escalera edit   pdf
openurl 
  Title Three-Dimensional Design of Error Correcting Output Codes Type Conference Article
  Year 2012 Publication 8th International Conference on Machine Learning and Data Mining Abbreviated Journal  
  Volume Issue Pages 29-  
  Keywords  
  Abstract  
  Address Berlin, Germany  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference MLDM  
  Notes HuPBA;MILAB Approved no  
  Call Number Admin @ si @ BGE2012a Serial 2041  
Permanent link to this record
 

 
Author Mohammad Ali Bagheri; Qigang Gao; Sergio Escalera edit   pdf
doi  isbn
openurl 
  Title Error Correcting Output Codes for multiclass classification: Application to two image vision problems Type Conference Article
  Year 2012 Publication 16th symposium on Artificial Intelligence & Signal Processing Abbreviated Journal  
  Volume Issue Pages 508-513  
  Keywords  
  Abstract Error-correcting output codes (ECOC) represents a powerful framework to deal with multiclass classification problems based on combining binary classifiers. The key factor affecting the performance of ECOC methods is the independence of binary classifiers, without which the ECOC method would be ineffective. In spite of its ability on classification of problems with relatively large number of classes, it has been applied in few real world problems. In this paper, we investigate the behavior of the ECOC approach on two image vision problems: logo recognition and shape classification using Decision Tree and AdaBoost as the base learners. The results show that the ECOC method can be used to improve the classification performance in comparison with the classical multiclass approaches.  
  Address Shiraz, Iran  
  Corporate Author Thesis  
  Publisher IEEE Xplore Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-4673-1478-7 Medium  
  Area Expedition Conference AISP  
  Notes HuPBA;MILAB Approved no  
  Call Number Admin @ si @ BGE2012b Serial 2042  
Permanent link to this record
 

 
Author Mohammad Ali Bagheri; Qigang Gao; Sergio Escalera edit   pdf
doi  isbn
openurl 
  Title Efficient pairwise classification using Local Cross Off strategy Type Conference Article
  Year 2012 Publication 25th Canadian Conference on Artificial Intelligence Abbreviated Journal  
  Volume 7310 Issue Pages 25-36  
  Keywords  
  Abstract The pairwise classification approach tends to perform better than other well-known approaches when dealing with multiclass classification problems. In the pairwise approach, however, the nuisance votes of many irrelevant classifiers may result in a wrong prediction class. To overcome this problem, a novel method, Local Crossing Off (LCO), is presented and evaluated in this paper. The proposed LCO system takes advantage of nearest neighbor classification algorithm because of its simplicity and speed, as well as the strength of other two powerful binary classifiers to discriminate between two classes. This paper provides a set of experimental results on 20 datasets using two base learners: Neural Networks and Support Vector Machines. The results show that the proposed technique not only achieves better classification accuracy, but also is computationally more efficient for tackling classification problems which have a relatively large number of target classes.  
  Address Toronto, Ontario  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title (up) Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-30352-4 Medium  
  Area Expedition Conference AI  
  Notes HuPBA;MILAB Approved no  
  Call Number Admin @ si @ BGE2012c Serial 2044  
Permanent link to this record
 

 
Author Mohammad Ali Bagheri; Qigang Gao; Sergio Escalera edit   pdf
doi  isbn
openurl 
  Title Logo recognition Based on the Dempster-Shafer Fusion of Multiple Classifiers Type Conference Article
  Year 2013 Publication 26th Canadian Conference on Artificial Intelligence Abbreviated Journal  
  Volume 7884 Issue Pages 1-12  
  Keywords Logo recognition; ensemble classification; Dempster-Shafer fusion; Zernike moments; generic Fourier descriptor; shape signature  
  Abstract Best paper award
The performance of different feature extraction and shape description methods in trademark image recognition systems have been studied by several researchers. However, the potential improvement in classification through feature fusion by ensemble-based methods has remained unattended. In this work, we evaluate the performance of an ensemble of three classifiers, each trained on different feature sets. Three promising shape description techniques, including Zernike moments, generic Fourier descriptors, and shape signature are used to extract informative features from logo images, and each set of features is fed into an individual classifier. In order to reduce recognition error, a powerful combination strategy based on the Dempster-Shafer theory is utilized to fuse the three classifiers trained on different sources of information. This combination strategy can effectively make use of diversity of base learners generated with different set of features. The recognition results of the individual classifiers are compared with those obtained from fusing the classifiers’ output, showing significant performance improvements of the proposed methodology.
 
  Address Canada; May 2013  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-38456-1 Medium  
  Area Expedition Conference AI  
  Notes HuPBA;MILAB Approved no  
  Call Number Admin @ si @ BGE2013b Serial 2249  
Permanent link to this record
 

 
Author Mohammad Ali Bagheri; Qigang Gao; Sergio Escalera edit  url
doi  openurl
  Title A Genetic-based Subspace Analysis Method for Improving Error-Correcting Output Coding Type Journal Article
  Year 2013 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 46 Issue 10 Pages 2830-2839  
  Keywords Error Correcting Output Codes; Evolutionary computation; Multiclass classification; Feature subspace; Ensemble classification  
  Abstract Two key factors affecting the performance of Error Correcting Output Codes (ECOC) in multiclass classification problems are the independence of binary classifiers and the problem-dependent coding design. In this paper, we propose an evolutionary algorithm-based approach to the design of an application-dependent codematrix in the ECOC framework. The central idea of this work is to design a three-dimensional codematrix, where the third dimension is the feature space of the problem domain. In order to do that, we consider the feature space in the design process of the codematrix with the aim of improving the independence and accuracy of binary classifiers. The proposed method takes advantage of some basic concepts of ensemble classification, such as diversity of classifiers, and also benefits from the evolutionary approach for optimizing the three-dimensional codematrix, taking into account the problem domain. We provide a set of experimental results using a set of benchmark datasets from the UCI Machine Learning Repository, as well as two real multiclass Computer Vision problems. Both sets of experiments are conducted using two different base learners: Neural Networks and Decision Trees. The results show that the proposed method increases the classification accuracy in comparison with the state-of-the-art ECOC coding techniques.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-3203 ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB Approved no  
  Call Number Admin @ si @ BGE2013a Serial 2247  
Permanent link to this record
 

 
Author Mohammad Ali Bagheri; Qigang Gao; Sergio Escalera edit  doi
openurl 
  Title Combining Local and Global Learners in the Pairwise Multiclass Classification Type Journal Article
  Year 2015 Publication Pattern Analysis and Applications Abbreviated Journal PAA  
  Volume 18 Issue 4 Pages 845-860  
  Keywords Multiclass classification; Pairwise approach; One-versus-one  
  Abstract Pairwise classification is a well-known class binarization technique that converts a multiclass problem into a number of two-class problems, one problem for each pair of classes. However, in the pairwise technique, nuisance votes of many irrelevant classifiers may result in a wrong class prediction. To overcome this problem, a simple, but efficient method is proposed and evaluated in this paper. The proposed method is based on excluding some classes and focusing on the most probable classes in the neighborhood space, named Local Crossing Off (LCO). This procedure is performed by employing a modified version of standard K-nearest neighbor and large margin nearest neighbor algorithms. The LCO method takes advantage of nearest neighbor classification algorithm because of its local learning behavior as well as the global behavior of powerful binary classifiers to discriminate between two classes. Combining these two properties in the proposed LCO technique will avoid the weaknesses of each method and will increase the efficiency of the whole classification system. On several benchmark datasets of varying size and difficulty, we found that the LCO approach leads to significant improvements using different base learners. The experimental results show that the proposed technique not only achieves better classification accuracy in comparison to other standard approaches, but also is computationally more efficient for tackling classification problems which have a relatively large number of target classes.  
  Address  
  Corporate Author Thesis  
  Publisher Springer London Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7541 ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB Approved no  
  Call Number Admin @ si @ BGE2014 Serial 2441  
Permanent link to this record
 

 
Author Mohammad Ali Bagheri; Qigang Gao; Sergio Escalera edit   pdf
doi  openurl
  Title Generic Subclass Ensemble: A Novel Approach to Ensemble Classification Type Conference Article
  Year 2014 Publication 22nd International Conference on Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 1254 - 1259  
  Keywords  
  Abstract Multiple classifier systems, also known as classifier ensembles, have received great attention in recent years because of their improved classification accuracy in different applications. In this paper, we propose a new general approach to ensemble classification, named generic subclass ensemble, in which each base classifier is trained with data belonging to a subset of classes, and thus discriminates among a subset of target categories. The ensemble classifiers are then fused using a combination rule. The proposed approach differs from existing methods that manipulate the target attribute, since in our approach individual classification problems are not restricted to two-class problems. We perform a series of experiments to evaluate the efficiency of the generic subclass approach on a set of benchmark datasets. Experimental results with multilayer perceptrons show that the proposed approach presents a viable alternative to the most commonly used ensemble classification approaches.  
  Address Stockholm; August 2014  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-4651 ISBN Medium  
  Area Expedition Conference ICPR  
  Notes HuPBA;MILAB Approved no  
  Call Number Admin @ si @ BGE2014b Serial 2445  
Permanent link to this record
 

 
Author Mohammad Ali Bagheri; Qigang Gao; Sergio Escalera edit   pdf
doi  openurl
  Title Action Recognition by Pairwise Proximity Function Support Vector Machines with Dynamic Time Warping Kernels Type Conference Article
  Year 2016 Publication 29th Canadian Conference on Artificial Intelligence Abbreviated Journal  
  Volume 9673 Issue Pages 3-14  
  Keywords  
  Abstract In the context of human action recognition using skeleton data, the 3D trajectories of joint points may be considered as multi-dimensional time series. The traditional recognition technique in the literature is based on time series dis(similarity) measures (such as Dynamic Time Warping). For these general dis(similarity) measures, k-nearest neighbor algorithms are a natural choice. However, k-NN classifiers are known to be sensitive to noise and outliers. In this paper, a new class of Support Vector Machine that is applicable to trajectory classification, such as action recognition, is developed by incorporating an efficient time-series distances measure into the kernel function. More specifically, the derivative of Dynamic Time Warping (DTW) distance measure is employed as the SVM kernel. In addition, the pairwise proximity learning strategy is utilized in order to make use of non-positive semi-definite (PSD) kernels in the SVM formulation. The recognition results of the proposed technique on two action recognition datasets demonstrates the ourperformance of our methodology compared to the state-of-the-art methods. Remarkably, we obtained 89 % accuracy on the well-known MSRAction3D dataset using only 3D trajectories of body joints obtained by Kinect  
  Address Victoria; Canada; May 2016  
  Corporate Author Thesis  
  Publisher Springer International Publishing Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference AI  
  Notes HuPBA;MILAB; Approved no  
  Call Number Admin @ si @ BGE2016b Serial 2770  
Permanent link to this record
 

 
Author Mohammad Ali Bagheri; Qigang Gao; Sergio Escalera edit   pdf
doi  openurl
  Title Support Vector Machines with Time Series Distance Kernels for Action Classification Type Conference Article
  Year 2016 Publication IEEE Winter Conference on Applications of Computer Vision Abbreviated Journal  
  Volume Issue Pages 1-7  
  Keywords  
  Abstract Despite the outperformance of Support Vector Machine (SVM) on many practical classification problems, the algorithm is not directly applicable to multi-dimensional trajectories having different lengths. In this paper, a new class of SVM that is applicable to trajectory classification, such as action recognition, is developed by incorporating two efficient time-series distances measures into the kernel function.
Dynamic Time Warping and Longest Common Subsequence distance measures along with their derivatives are
employed as the SVM kernel. In addition, the pairwise proximity learning strategy is utilized in order to make use of non-positive semi-definite kernels in the SVM formulation. The proposed method is employed for a challenging classification problem: action recognition by depth cameras using only skeleton data; and evaluated on three benchmark action datasets. Experimental results demonstrate the outperformance of our methodology compared to the state-ofthe-art on the considered datasets.
 
  Address Lake Placid; NY (USA); March 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WACV  
  Notes HuPBA;MILAB; Approved no  
  Call Number Admin @ si @ BGE2016a Serial 2773  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: