|   | 
Details
   web
Records
Author Gisel Bastidas-Guacho; Patricio Moreno; Boris X. Vintimilla; Angel Sappa
Title Application on the Loop of Multimodal Image Fusion: Trends on Deep-Learning Based Approaches Type Conference Article
Year 2023 Publication 13th International Conference on Pattern Recognition Systems Abbreviated Journal
Volume 14234 Issue Pages 25–36
Keywords
Abstract Multimodal image fusion allows the combination of information from different modalities, which is useful for tasks such as object detection, edge detection, and tracking, to name a few. Using the fused representation for applications results in better task performance. There are several image fusion approaches, which have been summarized in surveys. However, the existing surveys focus on image fusion approaches where the application on the loop of multimodal image fusion is not considered. On the contrary, this study summarizes deep learning-based multimodal image fusion for computer vision (e.g., object detection) and image processing applications (e.g., semantic segmentation), that is, approaches where the application module leverages the multimodal fusion process to enhance the final result. Firstly, we introduce image fusion and the existing general frameworks for image fusion tasks such as multifocus, multiexposure and multimodal. Then, we describe the multimodal image fusion approaches. Next, we review the state-of-the-art deep learning multimodal image fusion approaches for vision applications. Finally, we conclude our survey with the trends of task-driven multimodal image fusion.
Address Guayaquil; Ecuador; July 2023
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICPRS
Notes MSIAU Approved no
Call Number Admin @ si @ BMV2023 Serial (down) 3932
Permanent link to this record
 

 
Author Siyang Song; Micol Spitale; Cheng Luo; German Barquero; Cristina Palmero; Sergio Escalera; Michel Valstar; Tobias Baur; Fabien Ringeval; Elisabeth Andre; Hatice Gunes
Title REACT2023: The First Multiple Appropriate Facial Reaction Generation Challenge Type Conference Article
Year 2023 Publication Proceedings of the 31st ACM International Conference on Multimedia Abbreviated Journal
Volume Issue Pages 9620–9624
Keywords
Abstract The Multiple Appropriate Facial Reaction Generation Challenge (REACT2023) is the first competition event focused on evaluating multimedia processing and machine learning techniques for generating human-appropriate facial reactions in various dyadic interaction scenarios, with all participants competing strictly under the same conditions. The goal of the challenge is to provide the first benchmark test set for multi-modal information processing and to foster collaboration among the audio, visual, and audio-visual behaviour analysis and behaviour generation (a.k.a generative AI) communities, to compare the relative merits of the approaches to automatic appropriate facial reaction generation under different spontaneous dyadic interaction conditions. This paper presents: (i) the novelties, contributions and guidelines of the REACT2023 challenge; (ii) the dataset utilized in the challenge; and (iii) the performance of the baseline systems on the two proposed sub-challenges: Offline Multiple Appropriate Facial Reaction Generation and Online Multiple Appropriate Facial Reaction Generation, respectively. The challenge baseline code is publicly available at https://github.com/reactmultimodalchallenge/baseline_react2023.
Address Otawa; Canada; October 2023
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference MM
Notes HUPBA Approved no
Call Number Admin @ si @ SSL2023 Serial (down) 3931
Permanent link to this record
 

 
Author Yi Xiao; Felipe Codevilla; Diego Porres; Antonio Lopez
Title Scaling Vision-Based End-to-End Autonomous Driving with Multi-View Attention Learning Type Conference Article
Year 2023 Publication International Conference on Intelligent Robots and Systems Abbreviated Journal
Volume Issue Pages
Keywords
Abstract On end-to-end driving, human driving demonstrations are used to train perception-based driving models by imitation learning. This process is supervised on vehicle signals (e.g., steering angle, acceleration) but does not require extra costly supervision (human labeling of sensor data). As a representative of such vision-based end-to-end driving models, CILRS is commonly used as a baseline to compare with new driving models. So far, some latest models achieve better performance than CILRS by using expensive sensor suites and/or by using large amounts of human-labeled data for training. Given the difference in performance, one may think that it is not worth pursuing vision-based pure end-to-end driving. However, we argue that this approach still has great value and potential considering cost and maintenance. In this paper, we present CIL++, which improves on CILRS by both processing higher-resolution images using a human-inspired HFOV as an inductive bias and incorporating a proper attention mechanism. CIL++ achieves competitive performance compared to models which are more costly to develop. We propose to replace CILRS with CIL++ as a strong vision-based pure end-to-end driving baseline supervised by only vehicle signals and trained by conditional imitation learning.
Address Detroit; USA; October 2023
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference IROS
Notes ADAS Approved no
Call Number Admin @ si @ XCP2023 Serial (down) 3930
Permanent link to this record
 

 
Author Christian Keilstrup Ingwersen; Artur Xarles; Albert Clapes; Meysam Madadi; Janus Nortoft Jensen; Morten Rieger Hannemose; Anders Bjorholm Dahl; Sergio Escalera
Title Video-based Skill Assessment for Golf: Estimating Golf Handicap Type Conference Article
Year 2023 Publication Proceedings of the 6th International Workshop on Multimedia Content Analysis in Sports Abbreviated Journal
Volume Issue Pages 31-39
Keywords
Abstract Automated skill assessment in sports using video-based analysis holds great potential for revolutionizing coaching methodologies. This paper focuses on the problem of skill determination in golfers by leveraging deep learning models applied to a large database of video recordings of golf swings. We investigate different regression, ranking and classification based methods and compare to a simple baseline approach. The performance is evaluated using mean squared error (MSE) as well as computing the percentages of correctly ranked pairs based on the Kendall correlation. Our results demonstrate an improvement over the baseline, with a 35% lower mean squared error and 68% correctly ranked pairs. However, achieving fine-grained skill assessment remains challenging. This work contributes to the development of AI-driven coaching systems and advances the understanding of video-based skill determination in the context of golf.
Address Otawa; Canada; October 2023
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference MMSports
Notes HUPBA Approved no
Call Number Admin @ si @ KXC2023 Serial (down) 3929
Permanent link to this record
 

 
Author David Dueñas; Mostafa Kamal; Petia Radeva
Title Efficient Deep Learning Ensemble for Skin Lesion Classification Type Conference Article
Year 2023 Publication Proceedings of the 18th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications Abbreviated Journal
Volume Issue Pages 303-314
Keywords
Abstract Vision Transformers (ViTs) are deep learning techniques that have been gaining in popularity in recent years.
In this work, we study the performance of ViTs and Convolutional Neural Networks (CNNs) on skin lesions classification tasks, specifically melanoma diagnosis. We show that regardless of the performance of both architectures, an ensemble of them can improve their generalization. We also present an adaptation to the Gram-OOD* method (detecting Out-of-distribution (OOD) using Gram matrices) for skin lesion images. Moreover, the integration of super-convergence was critical to success in building models with strict computing and training time constraints. We evaluated our ensemble of ViTs and CNNs, demonstrating that generalization is enhanced by placing first in the 2019 and third in the 2020 ISIC Challenge Live Leaderboards
(available at https://challenge.isic-archive.com/leaderboards/live/).
Address Lisboa; Portugal; February 2023
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference VISIGRAPP
Notes MILAB Approved no
Call Number Admin @ si @ DKR2023 Serial (down) 3928
Permanent link to this record
 

 
Author Patricia Suarez; Angel Sappa
Title Toward a Thermal Image-Like Representation Type Conference Article
Year 2023 Publication Proceedings of the 18th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications Abbreviated Journal
Volume Issue Pages 133-140
Keywords
Abstract This paper proposes a novel model to obtain thermal image-like representations to be used as an input in any thermal image compressive sensing approach (e.g., thermal image: filtering, enhancing, super-resolution). Thermal images offer interesting information about the objects in the scene, in addition to their temperature. Unfortunately, in most of the cases thermal cameras acquire low resolution/quality images. Hence, in order to improve these images, there are several state-of-the-art approaches that exploit complementary information from a low-cost channel (visible image) to increase the image quality of an expensive channel (infrared image). In these SOTA approaches visible images are fused at different levels without paying attention the images acquire information at different bands of the spectral. In this paper a novel approach is proposed to generate thermal image-like representations from a low cost visible images, by means of a contrastive cycled GAN network. Obtained representations (synthetic thermal image) can be later on used to improve the low quality thermal image of the same scene. Experimental results on different datasets are presented.
Address Lisboa; Portugal; February 2023
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference VISIGRAPP
Notes MSIAU Approved no
Call Number Admin @ si @ SuS2023b Serial (down) 3927
Permanent link to this record
 

 
Author Guillermo Torres; Jan Rodríguez Dueñas; Sonia Baeza; Antoni Rosell; Carles Sanchez; Debora Gil
Title Prediction of Malignancy in Lung Cancer using several strategies for the fusion of Multi-Channel Pyradiomics Images Type Conference Article
Year 2023 Publication 7th Workshop on Digital Image Processing for Medical and Automotive Industry in the framework of SYNASC 2023 Abbreviated Journal
Volume Issue Pages
Keywords
Abstract This study shows the generation process and the subsequent study of the representation space obtained by extracting GLCM texture features from computer-aided tomography (CT) scans of pulmonary nodules (PN). For this, data from 92 patients from the Germans Trias i Pujol University Hospital were used. The workflow focuses on feature extraction using Pyradiomics and the VGG16 Convolutional Neural Network (CNN). The aim of the study is to assess whether the data obtained have a positive impact on the diagnosis of lung cancer (LC). To design a machine learning (ML) model training method that allows generalization, we train SVM and neural network (NN) models, evaluating diagnosis performance using metrics defined at slice and nodule level.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference DIPMAI
Notes IAM Approved no
Call Number Admin @ si @ TRB2023 Serial (down) 3926
Permanent link to this record
 

 
Author Albert Tatjer; Bhalaji Nagarajan; Ricardo Marques; Petia Radeva
Title CCLM: Class-Conditional Label Noise Modelling Type Conference Article
Year 2023 Publication 11th Iberian Conference on Pattern Recognition and Image Analysis Abbreviated Journal
Volume 14062 Issue Pages 3-14
Keywords
Abstract The performance of deep neural networks highly depends on the quality and volume of the training data. However, cost-effective labelling processes such as crowdsourcing and web crawling often lead to data with noisy (i.e., wrong) labels. Making models robust to this label noise is thus of prime importance. A common approach is using loss distributions to model the label noise. However, the robustness of these methods highly depends on the accuracy of the division of training set into clean and noisy samples. In this work, we dive in this research direction highlighting the existing problem of treating this distribution globally and propose a class-conditional approach to split the clean and noisy samples. We apply our approach to the popular DivideMix algorithm and show how the local treatment fares better with respect to the global treatment of loss distribution. We validate our hypothesis on two popular benchmark datasets and show substantial improvements over the baseline experiments. We further analyze the effectiveness of the proposal using two different metrics – Noise Division Accuracy and Classiness.
Address Alicante; Spain; June 2023
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference IbPRIA
Notes MILAB Approved no
Call Number Admin @ si @ TNM2023 Serial (down) 3925
Permanent link to this record
 

 
Author Stepan Simsa; Michal Uricar; Milan Sulc; Yash Patel; Ahmed Hamdi; Matej Kocian; Matyas Skalicky; Jiri Matas; Antoine Doucet; Mickael Coustaty; Dimosthenis Karatzas
Title Overview of DocILE 2023: Document Information Localization and Extraction Type Conference Article
Year 2023 Publication International Conference of the Cross-Language Evaluation Forum for European Languages Abbreviated Journal
Volume 14163 Issue Pages 276–293
Keywords Information Extraction; Computer Vision; Natural Language Processing; Optical Character Recognition; Document Understanding
Abstract This paper provides an overview of the DocILE 2023 Competition, its tasks, participant submissions, the competition results and possible future research directions. This first edition of the competition focused on two Information Extraction tasks, Key Information Localization and Extraction (KILE) and Line Item Recognition (LIR). Both of these tasks require detection of pre-defined categories of information in business documents. The second task additionally requires correctly grouping the information into tuples, capturing the structure laid out in the document. The competition used the recently published DocILE dataset and benchmark that stays open to new submissions. The diversity of the participant solutions indicates the potential of the dataset as the submissions included pure Computer Vision, pure Natural Language Processing, as well as multi-modal solutions and utilized all of the parts of the dataset, including the annotated, synthetic and unlabeled subsets.
Address Thessaloniki; Greece; September 2023
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CLEF
Notes DAG Approved no
Call Number Admin @ si @ SUS2023a Serial (down) 3924
Permanent link to this record
 

 
Author Cristina Palmero; Oleg V Komogortsev; Sergio Escalera; Sachin S Talathi
Title Multi-Rate Sensor Fusion for Unconstrained Near-Eye Gaze Estimation Type Conference Article
Year 2023 Publication Proceedings of the 2023 Symposium on Eye Tracking Research and Applications Abbreviated Journal
Volume Issue Pages 1-8
Keywords
Abstract The power requirements of video-oculography systems can be prohibitive for high-speed operation on portable devices. Recently, low-power alternatives such as photosensors have been evaluated, providing gaze estimates at high frequency with a trade-off in accuracy and robustness. Potentially, an approach combining slow/high-fidelity and fast/low-fidelity sensors should be able to exploit their complementarity to track fast eye motion accurately and robustly. To foster research on this topic, we introduce OpenSFEDS, a near-eye gaze estimation dataset containing approximately 2M synthetic camera-photosensor image pairs sampled at 500 Hz under varied appearance and camera position. We also formulate the task of sensor fusion for gaze estimation, proposing a deep learning framework consisting in appearance-based encoding and temporal eye-state dynamics. We evaluate several single- and multi-rate fusion baselines on OpenSFEDS, achieving 8.7% error decrease when tracking fast eye movements with a multi-rate approach vs. a gaze forecasting approach operating with a low-speed sensor alone.
Address Tubingen; Germany; May 2023
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ETRA
Notes HUPBA Approved no
Call Number Admin @ si @ PKE2023 Serial (down) 3923
Permanent link to this record
 

 
Author Albin Soutif; Antonio Carta; Joost Van de Weijer
Title Improving Online Continual Learning Performance and Stability with Temporal Ensembles Type Conference Article
Year 2023 Publication 2nd Conference on Lifelong Learning Agents Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Neural networks are very effective when trained on large datasets for a large number of iterations. However, when they are trained on non-stationary streams of data and in an online fashion, their performance is reduced (1) by the online setup, which limits the availability of data, (2) due to catastrophic forgetting because of the non-stationary nature of the data. Furthermore, several recent works (Caccia et al., 2022; Lange et al., 2023) arXiv:2205.13452 showed that replay methods used in continual learning suffer from the stability gap, encountered when evaluating the model continually (rather than only on task boundaries). In this article, we study the effect of model ensembling as a way to improve performance and stability in online continual learning. We notice that naively ensembling models coming from a variety of training tasks increases the performance in online continual learning considerably. Starting from this observation, and drawing inspirations from semi-supervised learning ensembling methods, we use a lightweight temporal ensemble that computes the exponential moving average of the weights (EMA) at test time, and show that it can drastically increase the performance and stability when used in combination with several methods from the literature.
Address Montreal; Canada; August 2023
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference COLLAS
Notes LAMP Approved no
Call Number Admin @ si @ SCW2023 Serial (down) 3922
Permanent link to this record
 

 
Author Hugo Bertiche; Niloy J Mitra; Kuldeep Kulkarni; Chun Hao Paul Huang; Tuanfeng Y Wang; Meysam Madadi; Sergio Escalera; Duygu Ceylan
Title Blowing in the Wind: CycleNet for Human Cinemagraphs from Still Images Type Conference Article
Year 2023 Publication 36th IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal
Volume Issue Pages 459-468
Keywords
Abstract Cinemagraphs are short looping videos created by adding subtle motions to a static image. This kind of media is popular and engaging. However, automatic generation of cinemagraphs is an underexplored area and current solutions require tedious low-level manual authoring by artists. In this paper, we present an automatic method that allows generating human cinemagraphs from single RGB images. We investigate the problem in the context of dressed humans under the wind. At the core of our method is a novel cyclic neural network that produces looping cinemagraphs for the target loop duration. To circumvent the problem of collecting real data, we demonstrate that it is possible, by working in the image normal space, to learn garment motion dynamics on synthetic data and generalize to real data. We evaluate our method on both synthetic and real data and demonstrate that it is possible to create compelling and plausible cinemagraphs from single RGB images.
Address Vancouver; Canada; June 2023
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPR
Notes HUPBA Approved no
Call Number Admin @ si @ BMK2023 Serial (down) 3921
Permanent link to this record
 

 
Author Senmao Li; Joost Van de Weijer; Yaxing Wang; Fahad Shahbaz Khan; Meiqin Liu; Jian Yang
Title 3D-Aware Multi-Class Image-to-Image Translation with NeRFs Type Conference Article
Year 2023 Publication 36th IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal
Volume Issue Pages 12652-12662
Keywords
Abstract Recent advances in 3D-aware generative models (3D-aware GANs) combined with Neural Radiance Fields (NeRF) have achieved impressive results. However no prior works investigate 3D-aware GANs for 3D consistent multiclass image-to-image (3D-aware 121) translation. Naively using 2D-121 translation methods suffers from unrealistic shape/identity change. To perform 3D-aware multiclass 121 translation, we decouple this learning process into a multiclass 3D-aware GAN step and a 3D-aware 121 translation step. In the first step, we propose two novel techniques: a new conditional architecture and an effective training strategy. In the second step, based on the well-trained multiclass 3D-aware GAN architecture, that preserves view-consistency, we construct a 3D-aware 121 translation system. To further reduce the view-consistency problems, we propose several new techniques, including a U-net-like adaptor network design, a hierarchical representation constrain and a relative regularization loss. In exten-sive experiments on two datasets, quantitative and qualitative results demonstrate that we successfully perform 3D-aware 121 translation with multi-view consistency. Code is available in 3DI2I.
Address Vancouver; Canada; June 2023
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPR
Notes LAMP Approved no
Call Number Admin @ si @ LWW2023b Serial (down) 3920
Permanent link to this record
 

 
Author Dong Wang; Jia Guo; Qiqi Shao; Haochi He; Zhian Chen; Chuanbao Xiao; Ajian Liu; Sergio Escalera; Hugo Jair Escalante; Zhen Lei; Jun Wan; Jiankang Deng
Title Wild Face Anti-Spoofing Challenge 2023: Benchmark and Results Type Conference Article
Year 2023 Publication Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops Abbreviated Journal
Volume Issue Pages 6379-6390
Keywords
Abstract Face anti-spoofing (FAS) is an essential mechanism for safeguarding the integrity of automated face recognition systems. Despite substantial advancements, the generalization of existing approaches to real-world applications remains challenging. This limitation can be attributed to the scarcity and lack of diversity in publicly available FAS datasets, which often leads to overfitting during training or saturation during testing. In terms of quantity, the number of spoof subjects is a critical determinant. Most datasets comprise fewer than 2,000 subjects. With regard to diversity, the majority of datasets consist of spoof samples collected in controlled environments using repetitive, mechanical processes. This data collection methodology results in homogenized samples and a dearth of scenario diversity. To address these shortcomings, we introduce the Wild Face Anti-Spoofing (WFAS) dataset, a large-scale, diverse FAS dataset collected in unconstrained settings. Our dataset encompasses 853,729 images of 321,751 spoof subjects and 529,571 images of 148,169 live subjects, representing a substantial increase in quantity. Moreover, our dataset incorporates spoof data obtained from the internet, spanning a wide array of scenarios and various commercial sensors, including 17 presentation attacks (PAs) that encompass both 2D and 3D forms. This novel data collection strategy markedly enhances FAS data diversity. Leveraging the WFAS dataset and Protocol 1 (Known-Type), we host the Wild Face Anti-Spoofing Challenge at the CVPR2023 workshop. Additionally, we meticulously evaluate representative methods using Protocol 1 and Protocol 2 (Unknown-Type). Through an in-depth examination of the challenge outcomes and benchmark baselines, we provide insightful analyses and propose potential avenues for future research. The dataset is released under Insightface 1 .
Address Vancouver; Canada; June 2023
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPRW
Notes HUPBA Approved no
Call Number Admin @ si @ WGS2023 Serial (down) 3919
Permanent link to this record
 

 
Author Galadrielle Humblot-Renaux; Sergio Escalera; Thomas B. Moeslund
Title Beyond AUROC & co. for evaluating out-of-distribution detection performance Type Conference Article
Year 2023 Publication Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops Abbreviated Journal
Volume Issue Pages 3880-3889
Keywords
Abstract While there has been a growing research interest in developing out-of-distribution (OOD) detection methods, there has been comparably little discussion around how these methods should be evaluated. Given their relevance for safe(r) AI, it is important to examine whether the basis for comparing OOD detection methods is consistent with practical needs. In this work, we take a closer look at the go-to metrics for evaluating OOD detection, and question the approach of exclusively reducing OOD detection to a binary classification task with little consideration for the detection threshold. We illustrate the limitations of current metrics (AUROC & its friends) and propose a new metric – Area Under the Threshold Curve (AUTC), which explicitly penalizes poor separation between ID and OOD samples. Scripts and data are available at https://github.com/glhr/beyond-auroc
Address Vancouver; Canada; June 2023
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPRW
Notes HUPBA Approved no
Call Number Admin @ si @ HEM2023 Serial (down) 3918
Permanent link to this record