toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Gabriel Villalonga edit  isbn
openurl 
  Title Leveraging Synthetic Data to Create Autonomous Driving Perception Systems Type Book Whole
  Year 2021 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Manually annotating images to develop vision models has been a major bottleneck
since computer vision and machine learning started to walk together. This has
been more evident since computer vision falls on the shoulders of data-hungry
deep learning techniques. When addressing on-board perception for autonomous
driving, the curse of data annotation is exacerbated due to the use of additional
sensors such as LiDAR. Therefore, any approach aiming at reducing such a timeconsuming and costly work is of high interest for addressing autonomous driving
and, in fact, for any application requiring some sort of artificial perception. In the
last decade, it has been shown that leveraging from synthetic data is a paradigm
worth to pursue in order to minimizing manual data annotation. The reason is
that the automatic process of generating synthetic data can also produce different
types of associated annotations (e.g. object bounding boxes for synthetic images
and LiDAR pointclouds, pixel/point-wise semantic information, etc.). Directly
using synthetic data for training deep perception models may not be the definitive
solution in all circumstances since it can appear a synth-to-real domain shift. In
this context, this work focuses on leveraging synthetic data to alleviate manual
annotation for three perception tasks related to driving assistance and autonomous
driving. In all cases, we assume the use of deep convolutional neural networks
(CNNs) to develop our perception models.
The first task addresses traffic sign recognition (TSR), a kind of multi-class
classification problem. We assume that the number of sign classes to be recognized
must be suddenly increased without having annotated samples to perform the
corresponding TSR CNN re-training. We show that leveraging synthetic samples of
such new classes and transforming them by a generative adversarial network (GAN)
trained on the known classes (i.e. without using samples from the new classes), it is
possible to re-train the TSR CNN to properly classify all the signs for a ∼ 1/4 ratio of
new/known sign classes. The second task addresses on-board 2D object detection,
focusing on vehicles and pedestrians. In this case, we assume that we receive a set
of images without the annotations required to train an object detector, i.e. without
object bounding boxes. Therefore, our goal is to self-annotate these images so
that they can later be used to train the desired object detector. In order to reach
this goal, we leverage from synthetic data and propose a semi-supervised learning
approach based on the co-training idea. In fact, we use a GAN to reduce the synthto-real domain shift before applying co-training. Our quantitative results show
that co-training and GAN-based image-to-image translation complement each
other up to allow the training of object detectors without manual annotation, and still almost reaching the upper-bound performances of the detectors trained from
human annotations. While in previous tasks we focus on vision-based perception,
the third task we address focuses on LiDAR pointclouds. Our initial goal was to
develop a 3D object detector trained on synthetic LiDAR-style pointclouds. While
for images we may expect synth/real-to-real domain shift due to differences in
their appearance (e.g. when source and target images come from different camera
sensors), we did not expect so for LiDAR pointclouds since these active sensors
factor out appearance and provide sampled shapes. However, in practice, we have
seen that it can be domain shift even among real-world LiDAR pointclouds. Factors
such as the sampling parameters of the LiDARs, the sensor suite configuration onboard the ego-vehicle, and the human annotation of 3D bounding boxes, do induce
a domain shift. We show it through comprehensive experiments with different
publicly available datasets and 3D detectors. This redirected our goal towards the
design of a GAN for pointcloud-to-pointcloud translation, a relatively unexplored
topic.
Finally, it is worth to mention that all the synthetic datasets used for these three
tasks, have been designed and generated in the context of this PhD work and will
be publicly released. Overall, we think this PhD presents several steps forward to
encourage leveraging synthetic data for developing deep perception models in the
field of driving assistance and autonomous driving.
 
  Address February 2021  
  Corporate Author Thesis Ph.D. thesis  
  Publisher (down) Ediciones Graficas Rey Place of Publication Editor Antonio Lopez;German Ros  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-122714-2-3 Medium  
  Area Expedition Conference  
  Notes ADAS; 600.118 Approved no  
  Call Number Admin @ si @ Vil2021 Serial 3599  
Permanent link to this record
 

 
Author Pau Riba edit  isbn
openurl 
  Title Distilling Structure from Imagery: Graph-based Models for the Interpretation of Document Images Type Book Whole
  Year 2020 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract From its early stages, the community of Pattern Recognition and Computer Vision has considered the importance of leveraging the structural information when understanding images. Usually, graphs have been proposed as a suitable model to represent this kind of information due to their flexibility and representational power able to codify both, the components, objects, or entities and their pairwise relationship. Even though graphs have been successfully applied to a huge variety of tasks, as a result of their symbolic and relational nature, graphs have always suffered from some limitations compared to statistical approaches. Indeed, some trivial mathematical operations do not have an equivalence in the graph domain. For instance, in the core of many pattern recognition applications, there is a need to compare two objects. This operation, which is trivial when considering feature vectors defined in \(\mathbb{R}^n\), is not properly defined for graphs.


In this thesis, we have investigated the importance of the structural information from two perspectives, the traditional graph-based methods and the new advances on Geometric Deep Learning. On the one hand, we explore the problem of defining a graph representation and how to deal with it on a large scale and noisy scenario. On the other hand, Graph Neural Networks are proposed to first redefine a Graph Edit Distance methodologies as a metric learning problem, and second, to apply them in a real use case scenario for the detection of repetitive patterns which define tables in invoice documents. As experimental framework, we have validated the different methodological contributions in the domain of Document Image Analysis and Recognition.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher (down) Ediciones Graficas Rey Place of Publication Editor Josep Llados;Alicia Fornes  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-121011-6-4 Medium  
  Area Expedition Conference  
  Notes DAG; 600.121 Approved no  
  Call Number Admin @ si @ Rib20 Serial 3478  
Permanent link to this record
 

 
Author Raul Gomez edit  isbn
openurl 
  Title Exploiting the Interplay between Visual and Textual Data for Scene Interpretation Type Book Whole
  Year 2020 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Machine learning experimentation under controlled scenarios and standard datasets is necessary to compare algorithms performance by evaluating all of them in the same setup. However, experimentation on how those algorithms perform on unconstrained data and applied tasks to solve real world problems is also a must to ascertain how that research can contribute to our society.
In this dissertation we experiment with the latest computer vision and natural language processing algorithms applying them to multimodal scene interpretation. Particularly, we research on how image and text understanding can be jointly exploited to address real world problems, focusing on learning from Social Media data.
We address several tasks that involve image and textual information, discuss their characteristics and offer our experimentation conclusions. First, we work on detection of scene text in images. Then, we work with Social Media posts, exploiting the captions associated to images as supervision to learn visual features, which we apply to multimodal semantic image retrieval. Subsequently, we work with geolocated Social Media images with associated tags, experimenting on how to use the tags as supervision, on location sensitive image retrieval and on exploiting location information for image tagging. Finally, we work on a specific classification problem of Social Media publications consisting on an image and a text: Multimodal hate speech classification.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher (down) Ediciones Graficas Rey Place of Publication Editor Dimosthenis Karatzas;Lluis Gomez;Jaume Gibert  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-121011-7-1 Medium  
  Area Expedition Conference  
  Notes DAG; 600.121 Approved no  
  Call Number Admin @ si @ Gom20 Serial 3479  
Permanent link to this record
 

 
Author Sounak Dey edit  isbn
openurl 
  Title Mapping between Images and Conceptual Spaces: Sketch-based Image Retrieval Type Book Whole
  Year 2020 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract This thesis presents several contributions to the literature of sketch based image retrieval (SBIR). In SBIR the first challenge we face is how to map two different domains to common space for effective retrieval of images, while tackling the different levels of abstraction people use to express their notion of objects around while sketching. To this extent we first propose a cross-modal learning framework that maps both sketches and text into a joint embedding space invariant to depictive style, while preserving semantics. Then we have also investigated different query types possible to encompass people's dilema in sketching certain world objects. For this we propose an approach for multi-modal image retrieval in multi-labelled images. A multi-modal deep network architecture is formulated to jointly model sketches and text as input query modalities into a common embedding space, which is then further aligned with the image feature space. This permits encoding the object-based features and its alignment with the query irrespective of the availability of the co-occurrence of different objects in the training set.

Finally, we explore the problem of zero-shot sketch-based image retrieval (ZS-SBIR), where human sketches are used as queries to conduct retrieval of photos from unseen categories. We importantly advance prior arts by proposing a novel ZS-SBIR scenario that represents a firm step forward in its practical application. The new setting uniquely recognises two important yet often neglected challenges of practical ZS-SBIR, (i) the large domain gap between amateur sketch and photo, and (ii) the necessity for moving towards large-scale retrieval. We first contribute to the community a novel ZS-SBIR dataset, QuickDraw-Extended. We also in this dissertation pave the path to the future direction of research in this domain.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher (down) Ediciones Graficas Rey Place of Publication Editor Josep Llados;Umapada Pal  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-121011-8-8 Medium  
  Area Expedition Conference  
  Notes DAG; 600.121 Approved no  
  Call Number Admin @ si @ Dey20 Serial 3480  
Permanent link to this record
 

 
Author Marc Masana edit  isbn
openurl 
  Title Lifelong Learning of Neural Networks: Detecting Novelty and Adapting to New Domains without Forgetting Type Book Whole
  Year 2020 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Computer vision has gone through considerable changes in the last decade as neural networks have come into common use. As available computational capabilities have grown, neural networks have achieved breakthroughs in many computer vision tasks, and have even surpassed human performance in others. With accuracy being so high, focus has shifted to other issues and challenges. One research direction that saw a notable increase in interest is on lifelong learning systems. Such systems should be capable of efficiently performing tasks, identifying and learning new ones, and should moreover be able to deploy smaller versions of themselves which are experts on specific tasks. In this thesis, we contribute to research on lifelong learning and address the compression and adaptation of networks to small target domains, the incremental learning of networks faced with a variety of tasks, and finally the detection of out-of-distribution samples at inference time.

We explore how knowledge can be transferred from large pretrained models to more task-specific networks capable of running on smaller devices by extracting the most relevant information. Using a pretrained model provides more robust representations and a more stable initialization when learning a smaller task, which leads to higher performance and is known as domain adaptation. However, those models are too large for certain applications that need to be deployed on devices with limited memory and computational capacity. In this thesis we show that, after performing domain adaptation, some learned activations barely contribute to the predictions of the model. Therefore, we propose to apply network compression based on low-rank matrix decomposition using the activation statistics. This results in a significant reduction of the model size and the computational cost.

Like human intelligence, machine intelligence aims to have the ability to learn and remember knowledge. However, when a trained neural network is presented with learning a new task, it ends up forgetting previous ones. This is known as catastrophic forgetting and its avoidance is studied in continual learning. The work presented in this thesis extensively surveys continual learning techniques and presents an approach to avoid catastrophic forgetting in sequential task learning scenarios. Our technique is based on using ternary masks in order to update a network to new tasks, reusing the knowledge of previous ones while not forgetting anything about them. In contrast to earlier work, our masks are applied to the activations of each layer instead of the weights. This considerably reduces the number of parameters to be added for each new task. Furthermore, the analysis on a wide range of work on incremental learning without access to the task-ID, provides insight on current state-of-the-art approaches that focus on avoiding catastrophic forgetting by using regularization, rehearsal of previous tasks from a small memory, or compensating the task-recency bias.

Neural networks trained with a cross-entropy loss force the outputs of the model to tend toward a one-hot encoded vector. This leads to models being too overly confident when presented with images or classes that were not present in the training distribution. The capacity of a system to be aware of the boundaries of the learned tasks and identify anomalies or classes which have not been learned yet is key to lifelong learning and autonomous systems. In this thesis, we present a metric learning approach to out-of-distribution detection that learns the task at hand on an embedding space.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher (down) Ediciones Graficas Rey Place of Publication Editor Joost Van de Weijer;Andrew Bagdanov  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-121011-9-5 Medium  
  Area Expedition Conference  
  Notes LAMP; 600.120 Approved no  
  Call Number Admin @ si @ Mas20 Serial 3481  
Permanent link to this record
 

 
Author Lei Kang edit  isbn
openurl 
  Title Robust Handwritten Text Recognition in Scarce Labeling Scenarios: Disentanglement, Adaptation and Generation Type Book Whole
  Year 2020 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Handwritten documents are not only preserved in historical archives but also widely used in administrative documents such as cheques and claims. With the rise of the deep learning era, many state-of-the-art approaches have achieved good performance on specific datasets for Handwritten Text Recognition (HTR). However, it is still challenging to solve real use cases because of the varied handwriting styles across different writers and the limited labeled data. Thus, both explorin a more robust handwriting recognition architectures and proposing methods to diminish the gap between the source and target data in an unsupervised way are
demanded.
In this thesis, firstly, we explore novel architectures for HTR, from Sequence-to-Sequence (Seq2Seq) method with attention mechanism to non-recurrent Transformer-based method. Secondly, we focus on diminishing the performance gap between source and target data in an unsupervised way. Finally, we propose a group of generative methods for handwritten text images, which could be utilized to increase the training set to obtain a more robust recognizer. In addition, by simply modifying the generative method and joining it with a recognizer, we end up with an effective disentanglement method to distill textual content from handwriting styles so as to achieve a generalized recognition performance.
We outperform state-of-the-art HTR performances in the experimental results among different scientific and industrial datasets, which prove the effectiveness of the proposed methods. To the best of our knowledge, the non-recurrent recognizer and the disentanglement method are the first contributions in the handwriting recognition field. Furthermore, we have outlined the potential research lines, which would be interesting to explore in the future.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher (down) Ediciones Graficas Rey Place of Publication Editor Alicia Fornes;Marçal Rusiñol;Mauricio Villegas  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-122714-0-9 Medium  
  Area Expedition Conference  
  Notes DAG; 600.121 Approved no  
  Call Number Admin @ si @ Kan20 Serial 3482  
Permanent link to this record
 

 
Author Manuel Carbonell edit  isbn
openurl 
  Title Neural Information Extraction from Semi-structured Documents A Type Book Whole
  Year 2020 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Sectors as fintech, legaltech or insurance process an inflow of millions of forms, invoices, id documents, claims or similar every day. Together with these, historical archives provide gigantic amounts of digitized documents containing useful information that needs to be stored in machine encoded text with a meaningful structure. This procedure, known as information extraction (IE) comprises the steps of localizing and recognizing text, identifying named entities contained in it and optionally finding relationships among its elements. In this work we explore multi-task neural models at image and graph level to solve all steps in a unified way. While doing so we find benefits and limitations of these end-to-end approaches in comparison with sequential separate methods. More specifically, we first propose a method to produce textual as well as semantic labels with a unified model from handwritten text line images. We do so with the use of a convolutional recurrent neural model trained with connectionist temporal classification to predict the textual as well as semantic information encoded in the images. Secondly, motivated by the success of this approach we investigate the unification of the localization and recognition tasks of handwritten text in full pages with an end-to-end model, observing benefits in doing so. Having two models that tackle information extraction subsequent task pairs in an end-to-end to end manner, we lastly contribute with a method to put them all together in a single neural network to solve the whole information extraction pipeline in a unified way. Doing so we observe some benefits and some limitations in the approach, suggesting that in certain cases it is beneficial to train specialized models that excel at a single challenging task of the information extraction process, as it can be the recognition of named entities or the extraction of relationships between them. For this reason we lastly study the use of the recently arrived graph neural network architectures for the semantic tasks of the information extraction process, which are recognition of named entities and relation extraction, achieving promising results on the relation extraction part.  
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher (down) Ediciones Graficas Rey Place of Publication Editor Alicia Fornes;Mauricio Villegas;Josep Llados  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-122714-1-6 Medium  
  Area Expedition Conference  
  Notes DAG; 600.121 Approved no  
  Call Number Admin @ si @ Car20 Serial 3483  
Permanent link to this record
 

 
Author Gemma Rotger edit  isbn
openurl 
  Title Lifelike Humans: Detailed Reconstruction of Expressive Human Faces Type Book Whole
  Year 2021 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Developing human-like digital characters is a challenging task since humans are used to recognizing our fellows, and find the computed generated characters inadequately humanized. To fulfill the standards of the videogame and digital film productions it is necessary to model and animate these characters the most closely to human beings. However, it is an arduous and expensive task, since many artists and specialists are required to work on a single character. Therefore, to fulfill these requirements we found an interesting option to study the automatic creation of detailed characters through inexpensive setups. In this work, we develop novel techniques to bring detailed characters by combining different aspects that stand out when developing realistic characters, skin detail, facial hairs, expressions, and microexpressions. We examine each of the mentioned areas with the aim of automatically recover each of the parts without user interaction nor training data. We study the problems for their robustness but also for the simplicity of the setup, preferring single-image with uncontrolled illumination and methods that can be easily computed with the commodity of a standard laptop. A detailed face with wrinkles and skin details is vital to develop a realistic character. In this work, we introduce our method to automatically describe facial wrinkles on the image and transfer to the recovered base face. Then we advance to facial hair recovery by resolving a fitting problem with a novel parametrization model. As of last, we develop a mapping function that allows transfer expressions and microexpressions between different meshes, which provides realistic animations to our detailed mesh. We cover all the mentioned points with the focus on key aspects as (i) how to describe skin wrinkles in a simple and straightforward manner, (ii) how to recover 3D from 2D detections, (iii) how to recover and model facial hair from 2D to 3D, (iv) how to transfer expressions between models holding both skin detail and facial hair, (v) how to perform all the described actions without training data nor user interaction. In this work, we present our proposals to solve these aspects with an efficient and simple setup. We validate our work with several datasets both synthetic and real data, prooving remarkable results even in challenging cases as occlusions as glasses, thick beards, and indeed working with different face topologies like single-eyed cyclops.  
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher (down) Ediciones Graficas Rey Place of Publication Editor Felipe Lumbreras;Antonio Agudo  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-122714-3-0 Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ Rot2021 Serial 3513  
Permanent link to this record
 

 
Author Petia Radeva; Amir Amini; Jintao Huang; Enric Marti edit   pdf
openurl 
  Title Deformable B-Solids: application for localization and tracking of MRI-SPAMM data Type Report
  Year 1996 Publication CVC Technical Report Abbreviated Journal  
  Volume Issue 8 Pages  
  Keywords  
  Abstract To date, MRI-SPAMM data from different image slices have been analyzed independently. In this paper, we propose an approach for 3D tag localization and tracking of SPAMM data by a novel deformable B-solid. The solid is defined in terms of a 3D tensor product B-spline. The isoparametric curves of the B-spline solid have special importance. These are termed implicit snakes as they deform under image forces from tag lines in different image slices. The localization and tracking of tag lines is performed under constraints of continuity and smoothness of the B-solid. The framework unifies the problems of localization, and displacement fitting and interpolation into the same procedure utilizing B-spline bases for interpolation. To track motion from boundaries and restrict image forces to the myocardium, a volumetric model is employed as a pair of coupled endocardial and epicardial B-spline surfaces. To recover deformations in the LV an energy-minimization problem is posed where both tag and ...  
  Address  
  Corporate Author Thesis  
  Publisher (down) CVC (UAB) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB;IAM Approved no  
  Call Number IAM @ iam @ RHM1996 Serial 1631  
Permanent link to this record
 

 
Author Albert Andaluz edit   pdf
url  openurl
  Title Harmonic Phase Flow: User's guide Type Manual
  Year 2012 Publication CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract HPF is a plugin for the computation of clinical scores under Osirix.
This manual provides a basic guide for experienced clinical staff. Chapter 1 provides the theoretical background in which this plugin is based.
Next, in chapter 2 we provide basic instructions for installing and uninstalling this plugin. chapter 3we shows a step-by-step scenario to compute clinical scores from tagged-MRI images with HPF. Finally, in chapter 4 we provide a quick guide for plugin developers
 
  Address Bellaterra, Barcelona (Spain)  
  Corporate Author Computer Vision Center Thesis  
  Publisher (down) CVC Place of Publication Barcelona Editor  
  Language english Summary Language english Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number IAM @ iam @ And2012 Serial 1863  
Permanent link to this record
 

 
Author Debora Gil edit  openurl
  Title Regularized Curvature Flow Type Report
  Year 2002 Publication CVC Technical Report Abbreviated Journal  
  Volume Issue 63 Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (down) Computer Vision Centre Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; Approved no  
  Call Number IAM @ iam @ Gil2002 Serial 1518  
Permanent link to this record
 

 
Author Enric Marti edit  openurl
  Title Análisis de elementos gráficos en documentos Type Report
  Year 1996 Publication CVC Technical Report Abbreviated Journal  
  Volume Issue 9 Pages  
  Keywords  
  Abstract En este texto se presenta un estudio sobre las t’ecnicas y aplicaciones de an’alisis de documentos, y más concretamente abordando la problem’atica del an’alisis de de entidades gr’aficas. El ’area de an’alisis de documentos tiene como objetivo la interpretaci’on de documentos impresos sobre papel por m’etodos computacionales, para obtener una descripci’on con un alto nivel de abstracci’on, que permita su posterior tratamiento y archivo por m’etodos inform’aticos. Este objetivo, junto a los trabajos realizados hasta el momento, le otorgan a esta ’area un amplio ’ambito de aplicaciones para la manipulaci’on y archivo de documentos sobre papel, que puede llegar a significar un salto cualitativo importante (del papel al disco ’optico) en el uso de soportes de informaci’on, debido a las importantes prestaciones de acceso y capacidad de archivo que suponen los medios inform’aticos. Generalmente los documentos son introducidos en los sistemas de an’alisis de documentos mediante scanner, obt...  
  Address  
  Corporate Author Thesis  
  Publisher (down) Computer Vision Centre Place of Publication CVC UAB Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; Approved no  
  Call Number IAM @ iam @ Mar1996 Serial 1587  
Permanent link to this record
 

 
Author Debora Gil; Petia Radeva edit  openurl
  Title Curvature based Distance Maps Type Report
  Year 2003 Publication CVC Technical Report Abbreviated Journal  
  Volume Issue 70 Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher (down) Computer Vision Center Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM;MILAB Approved no  
  Call Number IAM @ iam @ GIR2003a Serial 1534  
Permanent link to this record
 

 
Author Enric Marti; Carme Julia; Debora Gil edit  doi
openurl 
  Title A PBL Experience in the Teaching of Computer Graphics Type Journal Article
  Year 2006 Publication Computer Graphics Forum Abbreviated Journal CGF  
  Volume 25 Issue 1 Pages 95-103  
  Keywords  
  Abstract Project-Based Learning (PBL) is an educational strategy to improve student’s learning capability that, in recent years, has had a progressive acceptance in undergraduate studies. This methodology is based on solving a problem or project in a student working group. In this way, PBL focuses on learning the necessary tools to correctly find a solution to given problems. Since the learning initiative is transferred to the student, the PBL method promotes students own abilities. This allows a better assessment of the true workload that carries out the student in the subject. It follows that the methodology conforms to the guidelines of the Bologna document, which quantifies the student workload in a subject by means of the European credit transfer system (ECTS). PBL is currently applied in undergraduate studies needing strong practical training such as medicine, nursing or law sciences. Although this is also the case in engineering studies, amazingly, few experiences have been reported. In this paper we propose to use PBL in the educational organization of the Computer Graphics subjects in the Computer Science degree. Our PBL project focuses in the development of a C++ graphical environment based on the OpenGL libraries for visualization and handling of different graphical objects. The starting point is a basic skeleton that already includes lighting functions, perspective projection with mouse interaction to change the point of view and three predefined objects. Students have to complete this skeleton by adding their own functions to solve the project. A total number of 10 projects have been proposed and successfully solved. The exercises range from human face rendering to articulated objects, such as robot arms or puppets. In the present paper we extensively report the statement and educational objectives for two of the projects: solar system visualization and a chess game. We report our earlier educational experience based on the standard classroom theoretical, problem and practice sessions and the reasons that motivated searching for other learning methods. We have mainly chosen PBL because it improves the student learning initiative. We have applied the PBL educational model since the beginning of the second semester. The student’s feedback increases in his interest for the subject. We present a comparative study of the teachers’ and students’ workload between PBL and the classic teaching approach, which suggests that the workload increase in PBL is not as high as it seems.  
  Address  
  Corporate Author Thesis  
  Publisher (down) Computer Graphics Forum Place of Publication Computer Vision CenterComputer Science Department Escola Tcnica Superior d’Enginyeria (UAB), Edifi Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM;ADAS; Approved no  
  Call Number IAM @ iam @ MJG2006a Serial 1607  
Permanent link to this record
 

 
Author Oriol Pujol; Debora Gil; Petia Radeva edit   pdf
doi  openurl
  Title Fundamentals of Stop and Go active models Type Journal Article
  Year 2005 Publication Image and Vision Computing Abbreviated Journal  
  Volume 23 Issue 8 Pages 681-691  
  Keywords Deformable models; Geodesic snakes; Region-based segmentation  
  Abstract An efficient snake formulation should conform to the idea of picking the smoothest curve among all the shapes approximating an object of interest. In current geodesic snakes, the regularizing curvature also affects the convergence stage, hindering the latter at concave regions. In the present work, we make use of characteristic functions to define a novel geodesic formulation that decouples regularity and convergence. This term decoupling endows the snake with higher adaptability to non-convex shapes. Convergence is ensured by splitting the definition of the external force into an attractive vector field and a repulsive one. In our paper, we propose to use likelihood maps as approximation of characteristic functions of object appearance. The better efficiency and accuracy of our decoupled scheme are illustrated in the particular case of feature space-based segmentation.  
  Address  
  Corporate Author Thesis  
  Publisher (down) Butterworth-Heinemann Place of Publication Newton, MA, USA Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0262-8856 ISBN Medium  
  Area Expedition Conference  
  Notes IAM;MILAB;HuPBA Approved no  
  Call Number IAM @ iam @ PGR2005 Serial 1629  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: