|   | 
Details
   web
Records
Author Debora Gil; Petia Radeva; Fernando Vilariño
Title Anisotropic Contour Completion Type Conference Article
Year 2003 Publication Proceedings of the IEEE International Conference on Image Processing Abbreviated Journal
Volume Issue Pages
Keywords
Abstract In this paper we introduce a novel application of the diffusion tensor for anisotropic image processing. The Anisotropic Contour Completion (ACC) we suggest consists in extending the characteristic function of the open curve by means of a degenerated diffusion tensor that prevents any diffusion in the normal direction. We show that ACC is equivalent to a dilation with a continuous elliptic structural element that takes into account the local orientation of the contours to be closed. Experiments on contours extracted from real images show that ACC produces shapes able to adapt to any curve in an active contour framework. 1.
Address
Corporate Author Thesis
Publisher (down) Place of Publication Barcelona, Spain Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 0-7803-7751-6 Medium
Area Expedition Conference
Notes IAM;MV;MILAB;SIAI Approved no
Call Number IAM @ iam @ GRV2003 Serial 1539
Permanent link to this record
 

 
Author Debora Gil; Oriol Rodriguez-Leor; Petia Radeva; J. Mauri
Title Myocardial Perfusion Characterization From Contrast Angiography Spectral Distribution Type Journal Article
Year 2008 Publication IEEE Transactions on Medical Imaging Abbreviated Journal
Volume 27 Issue 5 Pages 641-649
Keywords Contrast angiography; myocardial perfusion; spectral analysis.
Abstract Despite recovering a normal coronary flow after acute myocardial infarction, percutaneous coronary intervention does not guarantee a proper perfusion (irrigation) of the infarcted area. This damage in microcirculation integrity may detrimentally affect the patient survival. Visual assessment of the myocardium opacification in contrast angiography serves to define a subjective score of the microcirculation integrity myocardial blush analysis (MBA). Although MBA correlates with patient prognosis its visual assessment is a very difficult task that requires of a highly expertise training in order to achieve a good intraobserver and interobserver agreement. In this paper, we provide objective descriptors of the myocardium staining pattern by analyzing the spectrum of the image local statistics. The descriptors proposed discriminate among the different phenomena observed in the angiographic sequence and allow defining an objective score of the myocardial perfusion.
Address
Corporate Author Thesis
Publisher (down) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes IAM;MILAB Approved no
Call Number IAM @ iam @ GRR2008 Serial 1541
Permanent link to this record
 

 
Author Aura Hernandez-Sabate
Title Automatic adventitia segmentation in IntraVascular UltraSound images Type Report
Year 2005 Publication CVC Technical Report Abbreviated Journal
Volume Issue 85 Pages
Keywords
Abstract A usual tool in cardiac disease diagnosis is vessel plaque assessment by analysis of IVUS sequences. Manual detection of lumen-intima, intima-media and media-adventitia vessel borders is the main activity of physicians in the process of plaque quantification. Large variety in vessel border descriptors, as well as, shades, artifacts and blurred response due to ultrasound physical properties troubles automated media-adventitia segmentation. This experimental work presents a solution to such a complex problem. The process blends advanced anisotropic filtering operators and statistic classification techniques, achieving an efficient vessel border modelling strategy. First of all, we introduce the theoretic base of the method. After that, we show the steps of the algorithm, validating the method with statistics that show that the media-adventitia border detection achieves an accuracy in the range of inter-observer variability regardless of plaque nature, vessel geometry and incomplete vessel borders. Finally, we present a little Matlab application to the automatic media-adventitia border.
Address
Corporate Author Thesis Master's thesis
Publisher (down) Place of Publication 08193 Bellaterra, Barcelona (Spain) Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes IAM; Approved no
Call Number IAM @ iam @ Her2005 Serial 1544
Permanent link to this record
 

 
Author Aura Hernandez-Sabate; Debora Gil;Eduard Fernandez-Nofrerias;Petia Radeva; Enric Marti
Title Approaching Artery Rigid Dynamics in IVUS Type Journal Article
Year 2009 Publication IEEE Transactions on Medical Imaging Abbreviated Journal TMI
Volume 28 Issue 11 Pages 1670-1680
Keywords Fourier analysis; intravascular ultrasound (IVUS) dynamics; longitudinal motion; quality measures; tissue deformation.
Abstract Tissue biomechanical properties (like strain and stress) are playing an increasing role in diagnosis and long-term treatment of intravascular coronary diseases. Their assessment strongly relies on estimation of vessel wall deformation. Since intravascular ultrasound (IVUS) sequences allow visualizing vessel morphology and reflect its dynamics, this technique represents a useful tool for evaluation of tissue mechanical properties. Image misalignment introduced by vessel-catheter motion is a major artifact for a proper tracking of tissue deformation. In this work, we focus on compensating and assessing IVUS rigid in-plane motion due to heart beating. Motion parameters are computed by considering both the vessel geometry and its appearance in the image. Continuum mechanics laws serve to introduce a novel score measuring motion reduction in in vivo sequences. Synthetic experiments validate the proposed score as measure of motion parameters accuracy; whereas results in in vivo pullbacks show the reliability of the presented methodologies in clinical cases.
Address
Corporate Author Thesis
Publisher (down) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0278-0062 ISBN Medium
Area Expedition Conference
Notes IAM; MILAB Approved no
Call Number IAM @ iam @ HGF2009 Serial 1545
Permanent link to this record
 

 
Author Aura Hernandez-Sabate; Debora Gil; Jaume Garcia; Enric Marti
Title Image-based Cardiac Phase Retrieval in Intravascular Ultrasound Sequences Type Journal Article
Year 2011 Publication IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control Abbreviated Journal T-UFFC
Volume 58 Issue 1 Pages 60-72
Keywords 3-D exploring; ECG; band-pass filter; cardiac motion; cardiac phase retrieval; coronary arteries; electrocardiogram signal; image intensity local mean evolution; image-based cardiac phase retrieval; in vivo pullbacks acquisition; intravascular ultrasound sequences; longitudinal motion; signal extrema; time 36 ms; band-pass filters; biomedical ultrasonics; cardiovascular system; electrocardiography; image motion analysis; image retrieval; image sequences; medical image processing; ultrasonic imaging
Abstract Longitudinal motion during in vivo pullbacks acquisition of intravascular ultrasound (IVUS) sequences is a major artifact for 3-D exploring of coronary arteries. Most current techniques are based on the electrocardiogram (ECG) signal to obtain a gated pullback without longitudinal motion by using specific hardware or the ECG signal itself. We present an image-based approach for cardiac phase retrieval from coronary IVUS sequences without an ECG signal. A signal reflecting cardiac motion is computed by exploring the image intensity local mean evolution. The signal is filtered by a band-pass filter centered at the main cardiac frequency. Phase is retrieved by computing signal extrema. The average frame processing time using our setup is 36 ms. Comparison to manually sampled sequences encourages a deeper study comparing them to ECG signals.
Address
Corporate Author Thesis
Publisher (down) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0885-3010 ISBN Medium
Area Expedition Conference
Notes IAM;ADAS Approved no
Call Number IAM @ iam @ HGG2011 Serial 1546
Permanent link to this record
 

 
Author Aura Hernandez-Sabate; Debora Gil; Petia Radeva
Title A Deterministic-Statistical Strategy for Adventitia Segmentation in IVUS images Type Report
Year 2005 Publication CVC Technical Report Abbreviated Journal
Volume Issue 89 Pages
Keywords
Abstract A useful tool for some specific studies in cardiac disease diagnosis is vessel plaque assessment by analysis of IVUS sequences. Manual detection of luminal (inner) and media-adventitia (external) vessel borders is the main activity of physicians in the process of lumen narrowing (plaque) quantification. Difficult definition of vessel border descriptors, as well as, shades, artifacts and blurred signal response due to ultrasound physical properties troubles automated adventitia segmentation. In order to efficiently approach such a complex problem, we propose blending advanced anisotropic filtering operators and statistical classification techniques into a vessel border modelling strategy. Our systematic statistical analysis shows that the reported adventitia detection achieves an accuracy in the range of inter-observer variability regardless of plaque nature, vessel geometry and incomplete vessel borders.
Address
Corporate Author Thesis
Publisher (down) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes IAM; MILAB Approved no
Call Number IAM @ iam @ HGR2005a Serial 1548
Permanent link to this record
 

 
Author Aura Hernandez-Sabate; Debora Gil; Albert Teis
Title How Do Conservation Laws Define a Motion Suppression Score in In-Vivo Ivus Sequences? Type Conference Article
Year 2007 Publication Proc. IEEE Ultrasonics Symp Abbreviated Journal
Volume Issue Pages 2231-2234
Keywords validation standards; IVUS motion compensation; conservation laws.
Abstract Evaluation of arterial tissue biomechanics for diagnosis and treatment of cardiovascular diseases is an active research field in the biomedical imaging processing area. IntraVascular UltraSound (IVUS) is a unique tool for such assessment since it reflects tissue morphology and deformation. A proper quantification and visualization of both properties is hindered by vessel structures misalignments introduced by cardiac dynamics. This has encouraged development of IVUS motion compensation techniques. However, there is a lack of an objective evaluation of motion reduction ensuring a reliable clinical application This work reports a novel score, the Conservation of Density Rate (CDR), for validation of motion compensation in in-vivo pullbacks. Synthetic experiments validate the proposed score as measure of motion parameters accuracy; while results in in vivo pullbacks show its reliability in clinical cases.
Address
Corporate Author Thesis
Publisher (down) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes IAM Approved no
Call Number IAM @ iam @ HTG2007 Serial 1550
Permanent link to this record
 

 
Author Aura Hernandez-Sabate; Petia Radeva; Antonio Tovar; Debora Gil
Title Vessel structures alignment by spectral analysis of ivus sequences Type Conference Article
Year 2006 Publication Proc. of CVII, MICCAI Workshop Abbreviated Journal
Volume Issue Pages 39-36
Keywords
Abstract Three-dimensional intravascular ultrasound (IVUS) allows to visualize and obtain volumetric measurements of coronary lesions through an exploration of the cross sections and longitudinal views of arteries. However, the visualization and subsequent morpho-geometric measurements in IVUS longitudinal cuts are subject to distortion caused by periodic image/vessel motion around the IVUS catheter. Usually, to overcome the image motion artifact ECG-gating and image-gated approaches are proposed, leading to slowing the pullback acquisition or disregarding part of IVUS data. In this paper, we argue that the image motion is due to 3-D vessel geometry as well as cardiac dynamics, and propose a dynamic model based on the tracking of an elliptical vessel approximation to recover the rigid transformation and align IVUS images without loosing any IVUS data. We report an extensive validation with synthetic simulated data and in vivo IVUS sequences of 30 patients achieving an average reduction of the image artifact of 97% in synthetic data and 79% in real-data. Our study shows that IVUS alignment improves longitudinal analysis of the IVUS data and is a necessary step towards accurate reconstruction and volumetric measurements of 3-D IVUS.
Address
Corporate Author Thesis
Publisher (down) Place of Publication Copenhaguen (Denmark), Editor
Language Summary Language Original Title
Series Editor Series Title 1st International Wokshop on Computer Vision for Intravascular and Intracardiac Imaging (CVII’06) Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes IAM; MILAB Approved no
Call Number IAM @ iam @ HRT2006 Serial 1552
Permanent link to this record
 

 
Author Aura Hernandez-Sabate; David Rotger; Debora Gil
Title Image-based ECG sampling of IVUS sequences Type Conference Article
Year 2008 Publication Proc. IEEE Ultrasonics Symp. IUS 2008 Abbreviated Journal
Volume Issue Pages 1330-1333
Keywords Longitudinal Motion; Image-based ECG-gating; Fourier analysis
Abstract Longitudinal motion artifacts in IntraVascular UltraSound (IVUS) sequences hinders a properly 3D reconstruction and vessel measurements. Most of current techniques base on the ECG signal to obtain a gated pullback without the longitudinal artifact by using a specific hardware or the ECG signal itself. The potential of IVUS images processing for phase retrieval still remains little explored. In this paper, we present a fast forward image-based algorithm to approach ECG sampling. Inspired on the fact that maximum and minimum lumen areas are related to end-systole and end-diastole, our cardiac phase retrieval is based on the analysis of tissue density of mass along the sequence. The comparison between automatic and manual phase retrieval (0.07 ± 0.07 mm. of error) encourages a deep validation contrasting with ECG signals.
Address Beijing (China)
Corporate Author Thesis
Publisher (down) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes IAM;MILAB Approved no
Call Number IAM @ iam @ HRG2008 Serial 1553
Permanent link to this record
 

 
Author Aura Hernandez-Sabate; Debora Gil; J. Mauri; Petia Radeva
Title Reducing cardiac motion in IVUS sequences Type Conference Article
Year 2006 Publication Proceeding of Computers in Cardiology Abbreviated Journal
Volume 33 Issue Pages 685-688
Keywords
Abstract Cardiac vessel displacement is a main artifact in IVUS sequences. It hinders visualization of the main structures in an appropriate orientation and alignment and affects extracting vessel measurements. In this paper, we present a novel approach for image sequence alignment based on spectral analysis, which removes rigid dynamics, preserving at the same time the vessel geometry. First, we suppress the translation by taking, for each frame, the center of mass of the image as origin of coordinates. In polar coordinates with such point as origin, the rotation appears as a horizontal displacement. The translation induces a phase shift in the Fourier coefficients of two consecutive polar images. We estimate the phase by adjusting a regression plane to the phases of the principal frequencies. Experiments show that the presented strategy suppress cardiac motion regardless of the acquisition device. 1.
Address
Corporate Author Thesis
Publisher (down) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes IAM; MILAB Approved no
Call Number IAM @ iam @ HGM2006a Serial 1554
Permanent link to this record
 

 
Author Aura Hernandez-Sabate; Debora Gil; Petia Radeva; E.N.Nofrerias
Title Anisotropic processing of image structures for adventitia detection in intravascular ultrasound images Type Conference Article
Year 2004 Publication Proc. Computers in Cardiology Abbreviated Journal
Volume 31 Issue Pages 229-232
Keywords
Abstract The adventitia layer appears as a weak edge in IVUS images with a non-uniform grey level, which difficulties its detection. In order to enhance edges, we apply an anisotropic filter that homogenizes the grey level along the image significant structures (ridges, valleys and edges). A standard edge detector applied to the filtered image yields a set of candidate points prone to be unconnected. The final model is obtained by interpolating the former line segments along the tangent direction to the level curves of the filtered image with an anisotropic contour closing technique based on functional extension principles
Address
Corporate Author Thesis
Publisher (down) Place of Publication Chicago (USA) Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes IAM; MILAB Approved no
Call Number IAM @ iam @ HGR2004 Serial 1555
Permanent link to this record
 

 
Author Ole Vilhelm-Larsen; Petia Radeva; Enric Marti
Title Guidelines for choosing optimal parameters of elasticity for snakes Type Book Chapter
Year 1995 Publication Computer Analysis Of Images And Patterns Abbreviated Journal LNCS
Volume 970 Issue Pages 106-113
Keywords
Abstract This paper proposes a guidance in the process of choosing and using the parameters of elasticity of a snake in order to obtain a precise segmentation. A new two step procedure is defined based on upper and lower bounds on the parameters. Formulas, by which these bounds can be calculated for real images where parts of the contour may be missing, are presented. Experiments on segmentation of bone structures in X-ray images have verified the usefulness of the new procedure.
Address
Corporate Author Thesis
Publisher (down) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MILAB;IAM Approved no
Call Number IAM @ iam @ LRM1995b Serial 1558
Permanent link to this record
 

 
Author Ole Larsen; Petia Radeva; Enric Marti
Title Bounds on the optimal elasticity parameters for a snake Type Journal Article
Year 1995 Publication Image Analysis and Processing Abbreviated Journal
Volume Issue Pages 37-42
Keywords
Abstract This paper develops a formalism by which an estimate for the upper and lower bounds for the elasticity parameters for a snake can be obtained. Objects different in size and shape give rise to different bounds. The bounds can be obtained based on an analysis of the shape of the object of interest. Experiments on synthetic images show a good correlation between the estimated behaviour of the snake and the one actually observed. Experiments on real X-ray images show that the parameters for optimal segmentation lie within the estimated bounds.
Address
Corporate Author Thesis
Publisher (down) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MILAB;IAM Approved no
Call Number IAM @ iam @ LRM1995a Serial 1559
Permanent link to this record
 

 
Author Josep Llados; Horst Bunke; Enric Marti
Title Structural Recognition of hand drawn floor plans Type Conference Article
Year 1996 Publication VI National Symposium on Pattern Recognition and Image Analysis Abbreviated Journal
Volume Issue Pages
Keywords Rotational Symmetry; Reflectional Symmetry; String Matching.
Abstract A system to recognize hand drawn architectural drawings in a CAD environment has been deve- loped. In this paper we focus on its high level interpretation module. To interpret a floor plan, the system must identify several building elements, whose description is stored in a library of pat- terns, as well as their spatial relationships. We propose a structural approach based on subgraph isomorphism techniques to obtain a high-level interpretation of the document. The vectorized input document and the patterns to be recognized are represented by attributed graphs. Discrete relaxation techniques (AC4 algorithm) have been applied to develop the matching algorithm. The process has been divided in three steps: node labeling, local consistency and global consistency verification. The hand drawn creation causes disturbed line drawings with several accuracy errors, which must be taken into account. Here we have identified them and the AC4 algorithm has been adapted to manage them.
Address
Corporate Author Thesis
Publisher (down) Place of Publication Cordoba Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes DAG;IAM; Approved no
Call Number IAM @ iam @ LIM1995 Serial 1565
Permanent link to this record
 

 
Author Josep Llados; Jaime Lopez-Krahe; Enric Marti
Title A system to understand hand-drawn floor plans using subgraph isomorphism and Hough transform Type Book Chapter
Year 1997 Publication Machine Vision and Applications Abbreviated Journal
Volume 10 Issue 3 Pages 150-158
Keywords Line drawings – Hough transform – Graph matching – CAD systems – Graphics recognition
Abstract Presently, man-machine interface development is a widespread research activity. A system to understand hand drawn architectural drawings in a CAD environment is presented in this paper. To understand a document, we have to identify its building elements and their structural properties. An attributed graph structure is chosen as a symbolic representation of the input document and the patterns to recognize in it. An inexact subgraph isomorphism procedure using relaxation labeling techniques is performed. In this paper we focus on how to speed up the matching. There is a building element, the walls, characterized by a hatching pattern. Using a straight line Hough transform (SLHT)-based method, we recognize this pattern, characterized by parallel straight lines, and remove from the input graph the edges belonging to this pattern. The isomorphism is then applied to the remainder of the input graph. When all the building elements have been recognized, the document is redrawn, correcting the inaccurate strokes obtained from a hand-drawn input.
Address
Corporate Author Thesis
Publisher (down) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes DAG;IAM Approved no
Call Number IAM @ iam @ LLM1997a Serial 1566
Permanent link to this record