|   | 
Details
   web
Records
Author Murad Al Haj; Jordi Gonzalez; Larry S. Davis
Title On Partial Least Squares in Head Pose Estimation: How to simultaneously deal with misalignment Type Conference Article
Year 2012 Publication 25th IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal
Volume Issue Pages 2602-2609
Keywords
Abstract Head pose estimation is a critical problem in many computer vision applications. These include human computer interaction, video surveillance, face and expression recognition. In most prior work on heads pose estimation, the positions of the faces on which the pose is to be estimated are specified manually. Therefore, the results are reported without studying the effect of misalignment. We propose a method based on partial least squares (PLS) regression to estimate pose and solve the alignment problem simultaneously. The contributions of this paper are two-fold: 1) we show that the kernel version of PLS (kPLS) achieves better than state-of-the-art results on the estimation problem and 2) we develop a technique to reduce misalignment based on the learned PLS factors.
Address Providence, Rhode Island
Corporate Author Thesis
Publisher (down) IEEE Xplore Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1063-6919 ISBN 978-1-4673-1226-4 Medium
Area Expedition Conference CVPR
Notes ISE Approved no
Call Number Admin @ si @ HGD2012 Serial 2029
Permanent link to this record
 

 
Author Jose Carlos Rubio; Joan Serrat; Antonio Lopez
Title Unsupervised co-segmentation through region matching Type Conference Article
Year 2012 Publication 25th IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal
Volume Issue Pages 749-756
Keywords
Abstract Co-segmentation is defined as jointly partitioning multiple images depicting the same or similar object, into foreground and background. Our method consists of a multiple-scale multiple-image generative model, which jointly estimates the foreground and background appearance distributions from several images, in a non-supervised manner. In contrast to other co-segmentation methods, our approach does not require the images to have similar foregrounds and different backgrounds to function properly. Region matching is applied to exploit inter-image information by establishing correspondences between the common objects that appear in the scene. Moreover, computing many-to-many associations of regions allow further applications, like recognition of object parts across images. We report results on iCoseg, a challenging dataset that presents extreme variability in camera viewpoint, illumination and object deformations and poses. We also show that our method is robust against large intra-class variability in the MSRC database.
Address Providence, Rhode Island
Corporate Author Thesis
Publisher (down) IEEE Xplore Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1063-6919 ISBN 978-1-4673-1226-4 Medium
Area Expedition Conference CVPR
Notes ADAS Approved no
Call Number Admin @ si @ RSL2012b; ADAS @ adas @ Serial 2033
Permanent link to this record
 

 
Author Laura Igual; Joan Carles Soliva; Antonio Hernandez; Sergio Escalera; Oscar Vilarroya; Petia Radeva
Title Supervised Brain Segmentation and Classification in Diagnostic of Attention-Deficit/Hyperactivity Disorder Type Conference Article
Year 2012 Publication High Performance Computing and Simulation, International Conference on Abbreviated Journal
Volume Issue Pages 182-187
Keywords
Abstract This paper presents an automatic method for external and internal segmentation of the caudate nucleus in Magnetic Resonance Images (MRI) based on statistical and structural machine learning approaches. This method is applied in Attention-Deficit/Hyperactivity Disorder (ADHD) diagnosis. The external segmentation method adapts the Graph Cut energy-minimization model to make it suitable for segmenting small, low-contrast structures, such as the caudate nucleus. In particular, new energy function data and boundary potentials are defined and a supervised energy term based on contextual brain structures is added. Furthermore, the internal segmentation method learns a classifier based on shape features of the Region of Interest (ROI) in MRI slices. The results show accurate external and internal caudate segmentation in a real data set and similar performance of ADHD diagnostic test to manual annotation.
Address Madrid
Corporate Author Thesis
Publisher (down) IEEE Xplore Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-1-4673-2359-8 Medium
Area Expedition Conference HPCS
Notes MILAB;HuPBA Approved no
Call Number Admin @ si @ ISH2012a Serial 2038
Permanent link to this record
 

 
Author Mohammad Ali Bagheri; Qigang Gao; Sergio Escalera
Title Error Correcting Output Codes for multiclass classification: Application to two image vision problems Type Conference Article
Year 2012 Publication 16th symposium on Artificial Intelligence & Signal Processing Abbreviated Journal
Volume Issue Pages 508-513
Keywords
Abstract Error-correcting output codes (ECOC) represents a powerful framework to deal with multiclass classification problems based on combining binary classifiers. The key factor affecting the performance of ECOC methods is the independence of binary classifiers, without which the ECOC method would be ineffective. In spite of its ability on classification of problems with relatively large number of classes, it has been applied in few real world problems. In this paper, we investigate the behavior of the ECOC approach on two image vision problems: logo recognition and shape classification using Decision Tree and AdaBoost as the base learners. The results show that the ECOC method can be used to improve the classification performance in comparison with the classical multiclass approaches.
Address Shiraz, Iran
Corporate Author Thesis
Publisher (down) IEEE Xplore Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-1-4673-1478-7 Medium
Area Expedition Conference AISP
Notes HuPBA;MILAB Approved no
Call Number Admin @ si @ BGE2012b Serial 2042
Permanent link to this record
 

 
Author Albert Gordo; Jose Antonio Rodriguez; Florent Perronnin; Ernest Valveny
Title Leveraging category-level labels for instance-level image retrieval Type Conference Article
Year 2012 Publication 25th IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal
Volume Issue Pages 3045-3052
Keywords
Abstract In this article, we focus on the problem of large-scale instance-level image retrieval. For efficiency reasons, it is common to represent an image by a fixed-length descriptor which is subsequently encoded into a small number of bits. We note that most encoding techniques include an unsupervised dimensionality reduction step. Our goal in this work is to learn a better subspace in a supervised manner. We especially raise the following question: “can category-level labels be used to learn such a subspace?” To answer this question, we experiment with four learning techniques: the first one is based on a metric learning framework, the second one on attribute representations, the third one on Canonical Correlation Analysis (CCA) and the fourth one on Joint Subspace and Classifier Learning (JSCL). While the first three approaches have been applied in the past to the image retrieval problem, we believe we are the first to show the usefulness of JSCL in this context. In our experiments, we use ImageNet as a source of category-level labels and report retrieval results on two standard dataseis: INRIA Holidays and the University of Kentucky benchmark. Our experimental study shows that metric learning and attributes do not lead to any significant improvement in retrieval accuracy, as opposed to CCA and JSCL. As an example, we report on Holidays an increase in accuracy from 39.3% to 48.6% with 32-dimensional representations. Overall JSCL is shown to yield the best results.
Address Providence, Rhode Island
Corporate Author Thesis
Publisher (down) IEEE Xplore Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1063-6919 ISBN 978-1-4673-1226-4 Medium
Area Expedition Conference CVPR
Notes DAG Approved no
Call Number Admin @ si @ GRP2012 Serial 2050
Permanent link to this record
 

 
Author Albert Gordo; Florent Perronnin; Ernest Valveny
Title Document classification using multiple views Type Conference Article
Year 2012 Publication 10th IAPR International Workshop on Document Analysis Systems Abbreviated Journal
Volume Issue Pages 33-37
Keywords
Abstract The combination of multiple features or views when representing documents or other kinds of objects usually leads to improved results in classification (and retrieval) tasks. Most systems assume that those views will be available both at training and test time. However, some views may be too `expensive' to be available at test time. In this paper, we consider the use of Canonical Correlation Analysis to leverage `expensive' views that are available only at training time. Experimental results show that this information may significantly improve the results in a classification task.
Address Australia
Corporate Author Thesis
Publisher (down) IEEE Computer Society Washington Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-0-7695-4661-2 Medium
Area Expedition Conference DAS
Notes DAG Approved no
Call Number Admin @ si @ GPV2012 Serial 2049
Permanent link to this record
 

 
Author Petia Radeva; A.Amini; J.Huang; Enric Marti
Title Deformable B-Solids and Implicit Snakes for Localization and Tracking of SPAMM MRI-Data Type Conference Article
Year 1996 Publication Workshop on Mathematical Methods in Biomedical Image Analysis Abbreviated Journal
Volume Issue Pages 192-201
Keywords
Abstract To date, MRI-SPAMM data from different image slices have been analyzed independently. In this paper, we propose an approach for 3D tag localization and tracking of SPAMM data by a novel deformable B-solid. The solid is defined in terms of a 3D tensor product B-spline. The isoparametric curves of the B-spline solid have special importance. These are termed implicit snakes as they deform under image forces from tag lines in different image slices. The localization and tracking of tag lines is performed under constraints of continuity and smoothness of the B-solid. The framework unifies the problems of localization, and displacement fitting and interpolation into the same procedure utilizing B-spline bases for interpolation. To track motion from boundaries and restrict image forces to the myocardium, a volumetric model is employed as a pair of coupled endocardial and epicardial B-spline surfaces. To recover deformations in the LV an energy-minimization problem is posed where both tag and ...
Address San Francisco CA
Corporate Author Thesis
Publisher (down) IEEE Computer Society Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 0-8186-7368-0 Medium
Area Expedition Conference MMBIA ’96
Notes MILAB;IAM; Approved no
Call Number IAM @ iam @ RAH1996 Serial 1630
Permanent link to this record
 

 
Author Eduard Vazquez; Ramon Baldrich; Joost Van de Weijer; Maria Vanrell
Title Describing Reflectances for Colour Segmentation Robust to Shadows, Highlights and Textures Type Journal Article
Year 2011 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI
Volume 33 Issue 5 Pages 917-930
Keywords
Abstract The segmentation of a single material reflectance is a challenging problem due to the considerable variation in image measurements caused by the geometry of the object, shadows, and specularities. The combination of these effects has been modeled by the dichromatic reflection model. However, the application of the model to real-world images is limited due to unknown acquisition parameters and compression artifacts. In this paper, we present a robust model for the shape of a single material reflectance in histogram space. The method is based on a multilocal creaseness analysis of the histogram which results in a set of ridges representing the material reflectances. The segmentation method derived from these ridges is robust to both shadow, shading and specularities, and texture in real-world images. We further complete the method by incorporating prior knowledge from image statistics, and incorporate spatial coherence by using multiscale color contrast information. Results obtained show that our method clearly outperforms state-of-the-art segmentation methods on a widely used segmentation benchmark, having as a main characteristic its excellent performance in the presence of shadows and highlights at low computational cost.
Address Los Alamitos; CA; USA;
Corporate Author Thesis
Publisher (down) IEEE Computer Society Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0162-8828 ISBN Medium
Area Expedition Conference
Notes CIC Approved no
Call Number Admin @ si @ VBW2011 Serial 1715
Permanent link to this record
 

 
Author Angel Sappa; Fadi Dornaika; Daniel Ponsa; David Geronimo; Antonio Lopez
Title An Efficient Approach to Onboard Stereo Vision System Pose Estimation Type Journal Article
Year 2008 Publication IEEE Transactions on Intelligent Transportation Systems Abbreviated Journal TITS
Volume 9 Issue 3 Pages 476–490
Keywords Camera extrinsic parameter estimation, ground plane estimation, onboard stereo vision system
Abstract This paper presents an efficient technique for estimating the pose of an onboard stereo vision system relative to the environment’s dominant surface area, which is supposed to be the road surface. Unlike previous approaches, it can be used either for urban or highway scenarios since it is not based on a specific visual traffic feature extraction but on 3-D raw data points. The whole process is performed in the Euclidean space and consists of two stages. Initially, a compact 2-D representation of the original 3-D data points is computed. Then, a RANdom SAmple Consensus (RANSAC) based least-squares approach is used to fit a plane to the road. Fast RANSAC fitting is obtained by selecting points according to a probability function that takes into account the density of points at a given depth. Finally, stereo camera height and pitch angle are computed related to the fitted road plane. The proposed technique is intended to be used in driverassistance systems for applications such as vehicle or pedestrian detection. Experimental results on urban environments, which are the most challenging scenarios (i.e., flat/uphill/downhill driving, speed bumps, and car’s accelerations), are presented. These results are validated with manually annotated ground truth. Additionally, comparisons with previous works are presented to show the improvements in the central processing unit processing time, as well as in the accuracy of the obtained results.
Address
Corporate Author Thesis
Publisher (down) IEEE Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ADAS Approved no
Call Number ADAS @ adas @ SDP2008 Serial 1000
Permanent link to this record
 

 
Author Aura Hernandez-Sabate; Monica Mitiko; Sergio Shiguemi; Debora Gil
Title A validation protocol for assessing cardiac phase retrieval in IntraVascular UltraSound Type Conference Article
Year 2010 Publication Computing in Cardiology Abbreviated Journal
Volume 37 Issue Pages 899-902
Keywords
Abstract A good reliable approach to cardiac triggering is of utmost importance in obtaining accurate quantitative results of atherosclerotic plaque burden from the analysis of IntraVascular UltraSound. Although, in the last years, there has been an increase in research of methods for retrospective gating, there is no general consensus in a validation protocol. Many methods are based on quality assessment of longitudinal cuts appearance and those reporting quantitative numbers do not follow a standard protocol. Such heterogeneity in validation protocols makes faithful comparison across methods a difficult task. We propose a validation protocol based on the variability of the retrieved cardiac phase and explore the capability of several quality measures for quantifying such variability. An ideal detector, suitable for its application in clinical practice, should produce stable phases. That is, it should always sample the same cardiac cycle fraction. In this context, one should measure the variability (variance) of a candidate sampling with respect a ground truth (reference) sampling, since the variance would indicate how spread we are aiming a target. In order to quantify the deviation between the sampling and the ground truth, we have considered two quality scores reported in the literature: signed distance to the closest reference sample and distance to the right of each reference sample. We have also considered the residuals of the regression line of reference against candidate sampling. The performance of the measures has been explored on a set of synthetic samplings covering different cardiac cycle fractions and variabilities. From our simulations, we conclude that the metrics related to distances are sensitive to the shift considered while the residuals are robust against fraction and variabilities as far as one can establish a pair-wise correspondence between candidate and reference. We will further investigate the impact of false positive and negative detections in experimental data.
Address
Corporate Author Thesis
Publisher (down) IEEE Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0276-6547 ISBN 978-1-4244-7318-2 Medium
Area Expedition Conference CINC
Notes IAM; Approved no
Call Number IAM @ iam @ HSM2010 Serial 1551
Permanent link to this record
 

 
Author Patricia Marquez; Debora Gil; Aura Hernandez-Sabate
Title A Confidence Measure for Assessing Optical Flow Accuracy in the Absence of Ground Truth Type Conference Article
Year 2011 Publication IEEE International Conference on Computer Vision – Workshops Abbreviated Journal
Volume Issue Pages 2042-2049
Keywords IEEE International Conference on Computer Vision – Workshops
Abstract Optical flow is a valuable tool for motion analysis in autonomous navigation systems. A reliable application requires determining the accuracy of the computed optical flow. This is a main challenge given the absence of ground truth in real world sequences. This paper introduces a measure of optical flow accuracy for Lucas-Kanade based flows in terms of the numerical stability of the data-term. We call this measure optical flow condition number. A statistical analysis over ground-truth data show a good statistical correlation between the condition number and optical flow error. Experiments on driving sequences illustrate its potential for autonomous navigation systems.
Address
Corporate Author Thesis
Publisher (down) IEEE Place of Publication Barcelona (Spain) Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICCVW
Notes IAM; ADAS Approved no
Call Number IAM @ iam @ MGH2011 Serial 1682
Permanent link to this record
 

 
Author Maria Salamo; Sergio Escalera
Title Increasing Retrieval Quality in Conversational Recommenders Type Journal Article
Year 2011 Publication IEEE Transactions on Knowledge and Data Engineering Abbreviated Journal TKDE
Volume 99 Issue Pages 1-1
Keywords
Abstract IF JCR CCIA 2.286 2009 24/103
JCR Impact Factor 2010: 1.851
A major task of research in conversational recommender systems is personalization. Critiquing is a common and powerful form of feedback, where a user can express her feature preferences by applying a series of directional critiques over the recommendations instead of providing specific preference values. Incremental Critiquing is a conversational recommender system that uses critiquing as a feedback to efficiently personalize products. The expectation is that in each cycle the system retrieves the products that best satisfy the user’s soft product preferences from a minimal information input. In this paper, we present a novel technique that increases retrieval quality based on a combination of compatibility and similarity scores. Under the hypothesis that a user learns Turing the recommendation process, we propose two novel exponential reinforcement learning approaches for compatibility that take into account both the instant at which the user makes a critique and the number of satisfied critiques. Moreover, we consider that the impact of features on the similarity differs according to the preferences manifested by the user. We propose a global weighting approach that uses a common weight for nearest cases in order to focus on groups of relevant products. We show that our methodology significantly improves recommendation efficiency in four data sets of different sizes in terms of session length in comparison with state-of-the-art approaches. Moreover, our recommender shows higher robustness against noisy user data when compared to classical approaches
Address
Corporate Author Thesis
Publisher (down) IEEE Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1041-4347 ISBN Medium
Area Expedition Conference
Notes MILAB; HuPBA Approved no
Call Number Admin @ si @ SaE2011 Serial 1713
Permanent link to this record
 

 
Author Albert Andaluz; Francesc Carreras; Cristina Santa Marta;Debora Gil
Title Myocardial torsion estimation with Tagged-MRI in the OsiriX platform Type Conference Article
Year 2012 Publication ISBI Workshop on Open Source Medical Image Analysis software Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Myocardial torsion (MT) plays a crucial role in the assessment of the functionality of the
left ventricle. For this purpose, the IAM group at the CVC has developed the Harmonic Phase Flow (HPF) plugin for the Osirix DICOM platform . We have validated its funcionalty on sequences acquired using different protocols and including healthy and pathological cases. Results show similar torsion trends for SPAMM acquisitions, with pathological cases introducing expected deviations from the ground truth. Finally, we provide the plugin free of charge at http://iam.cvc.uab.es
Address Barcelona, Spain
Corporate Author Thesis
Publisher (down) IEEE Place of Publication Editor Wiro Niessen (Erasmus MC) and Marc Modat (UCL)
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ISBI
Notes IAM Approved no
Call Number IAM @ iam @ ACS2012 Serial 1900
Permanent link to this record
 

 
Author Javier Marin; David Vazquez; Antonio Lopez; Jaume Amores; Bastian Leibe
Title Random Forests of Local Experts for Pedestrian Detection Type Conference Article
Year 2013 Publication 15th IEEE International Conference on Computer Vision Abbreviated Journal
Volume Issue Pages 2592 - 2599
Keywords ADAS; Random Forest; Pedestrian Detection
Abstract Pedestrian detection is one of the most challenging tasks in computer vision, and has received a lot of attention in the last years. Recently, some authors have shown the advantages of using combinations of part/patch-based detectors in order to cope with the large variability of poses and the existence of partial occlusions. In this paper, we propose a pedestrian detection method that efficiently combines multiple local experts by means of a Random Forest ensemble. The proposed method works with rich block-based representations such as HOG and LBP, in such a way that the same features are reused by the multiple local experts, so that no extra computational cost is needed with respect to a holistic method. Furthermore, we demonstrate how to integrate the proposed approach with a cascaded architecture in order to achieve not only high accuracy but also an acceptable efficiency. In particular, the resulting detector operates at five frames per second using a laptop machine. We tested the proposed method with well-known challenging datasets such as Caltech, ETH, Daimler, and INRIA. The method proposed in this work consistently ranks among the top performers in all the datasets, being either the best method or having a small difference with the best one.
Address Sydney; Australia; December 2013
Corporate Author Thesis
Publisher (down) IEEE Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-5499 ISBN Medium
Area Expedition Conference ICCV
Notes ADAS; 600.057; 600.054 Approved no
Call Number ADAS @ adas @ MVL2013 Serial 2333
Permanent link to this record
 

 
Author David Vazquez; Antonio Lopez; Daniel Ponsa
Title Unsupervised Domain Adaptation of Virtual and Real Worlds for Pedestrian Detection Type Conference Article
Year 2012 Publication 21st International Conference on Pattern Recognition Abbreviated Journal
Volume Issue Pages 3492 - 3495
Keywords Pedestrian Detection; Domain Adaptation; Virtual worlds
Abstract Vision-based object detectors are crucial for different applications. They rely on learnt object models. Ideally, we would like to deploy our vision system in the scenario where it must operate, and lead it to self-learn how to distinguish the objects of interest, i.e., without human intervention. However, the learning of each object model requires labelled samples collected through a tiresome manual process. For instance, we are interested in exploring the self-training of a pedestrian detector for driver assistance systems. Our first approach to avoid manual labelling consisted in the use of samples coming from realistic computer graphics, so that their labels are automatically available [12]. This would make possible the desired self-training of our pedestrian detector. However, as we showed in [14], between virtual and real worlds it may be a dataset shift. In order to overcome it, we propose the use of unsupervised domain adaptation techniques that avoid human intervention during the adaptation process. In particular, this paper explores the use of the transductive SVM (T-SVM) learning algorithm in order to adapt virtual and real worlds for pedestrian detection (Fig. 1).
Address Tsukuba Science City, Japan
Corporate Author Thesis
Publisher (down) IEEE Place of Publication Tsukuba Science City, JAPAN Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-4651 ISBN 978-1-4673-2216-4 Medium
Area Expedition Conference ICPR
Notes ADAS Approved no
Call Number ADAS @ adas @ VLP2012 Serial 1981
Permanent link to this record