toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Riccardo Del Chiaro; Bartlomiej Twardowski; Andrew Bagdanov; Joost Van de Weijer edit   pdf
openurl 
  Title Recurrent attention to transient tasks for continual image captioning Type Conference Article
  Year 2020 Publication (up) 34th Conference on Neural Information Processing Systems Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Research on continual learning has led to a variety of approaches to mitigating catastrophic forgetting in feed-forward classification networks. Until now surprisingly little attention has been focused on continual learning of recurrent models applied to problems like image captioning. In this paper we take a systematic look at continual learning of LSTM-based models for image captioning. We propose an attention-based approach that explicitly accommodates the transient nature of vocabularies in continual image captioning tasks -- i.e. that task vocabularies are not disjoint. We call our method Recurrent Attention to Transient Tasks (RATT), and also show how to adapt continual learning approaches based on weight egularization and knowledge distillation to recurrent continual learning problems. We apply our approaches to incremental image captioning problem on two new continual learning benchmarks we define using the MS-COCO and Flickr30 datasets. Our results demonstrate that RATT is able to sequentially learn five captioning tasks while incurring no forgetting of previously learned ones.  
  Address virtual; December 2020  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference NEURIPS  
  Notes LAMP; 600.120 Approved no  
  Call Number Admin @ si @ CTB2020 Serial 3484  
Permanent link to this record
 

 
Author Yaxing Wang; Lu Yu; Joost Van de Weijer edit   pdf
openurl 
  Title DeepI2I: Enabling Deep Hierarchical Image-to-Image Translation by Transferring from GANs Type Conference Article
  Year 2020 Publication (up) 34th Conference on Neural Information Processing Systems Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Image-to-image translation has recently achieved remarkable results. But despite current success, it suffers from inferior performance when translations between classes require large shape changes. We attribute this to the high-resolution bottlenecks which are used by current state-of-the-art image-to-image methods. Therefore, in this work, we propose a novel deep hierarchical Image-to-Image Translation method, called DeepI2I. We learn a model by leveraging hierarchical features: (a) structural information contained in the shallow layers and (b) semantic information extracted from the deep layers. To enable the training of deep I2I models on small datasets, we propose a novel transfer learning method, that transfers knowledge from pre-trained GANs. Specifically, we leverage the discriminator of a pre-trained GANs (i.e. BigGAN or StyleGAN) to initialize both the encoder and the discriminator and the pre-trained generator to initialize the generator of our model. Applying knowledge transfer leads to an alignment problem between the encoder and generator. We introduce an adaptor network to address this. On many-class image-to-image translation on three datasets (Animal faces, Birds, and Foods) we decrease mFID by at least 35% when compared to the state-of-the-art. Furthermore, we qualitatively and quantitatively demonstrate that transfer learning significantly improves the performance of I2I systems, especially for small datasets. Finally, we are the first to perform I2I translations for domains with over 100 classes.  
  Address virtual; December 2020  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference NEURIPS  
  Notes LAMP; 600.120 Approved no  
  Call Number Admin @ si @ WYW2020 Serial 3485  
Permanent link to this record
 

 
Author Fei Yang; Luis Herranz; Yongmei Cheng; Mikhail Mozerov edit   pdf
url  doi
openurl 
  Title Slimmable compressive autoencoders for practical neural image compression Type Conference Article
  Year 2021 Publication (up) 34th IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 4996-5005  
  Keywords  
  Abstract Neural image compression leverages deep neural networks to outperform traditional image codecs in rate-distortion performance. However, the resulting models are also heavy, computationally demanding and generally optimized for a single rate, limiting their practical use. Focusing on practical image compression, we propose slimmable compressive autoencoders (SlimCAEs), where rate (R) and distortion (D) are jointly optimized for different capacities. Once trained, encoders and decoders can be executed at different capacities, leading to different rates and complexities. We show that a successful implementation of SlimCAEs requires suitable capacity-specific RD tradeoffs. Our experiments show that SlimCAEs are highly flexible models that provide excellent rate-distortion performance, variable rate, and dynamic adjustment of memory, computational cost and latency, thus addressing the main requirements of practical image compression.  
  Address Virtual; June 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPR  
  Notes LAMP; 600.120 Approved no  
  Call Number Admin @ si @ YHC2021 Serial 3569  
Permanent link to this record
 

 
Author Vincenzo Lomonaco; Lorenzo Pellegrini; Andrea Cossu; Antonio Carta; Gabriele Graffieti; Tyler L. Hayes; Matthias De Lange; Marc Masana; Jary Pomponi; Gido van de Ven; Martin Mundt; Qi She; Keiland Cooper; Jeremy Forest; Eden Belouadah; Simone Calderara; German I. Parisi; Fabio Cuzzolin; Andreas Tolias; Simone Scardapane; Luca Antiga; Subutai Amhad; Adrian Popescu; Christopher Kanan; Joost Van de Weijer; Tinne Tuytelaars; Davide Bacciu; Davide Maltoni edit   pdf
doi  openurl
  Title Avalanche: an End-to-End Library for Continual Learning Type Conference Article
  Year 2021 Publication (up) 34th IEEE Conference on Computer Vision and Pattern Recognition Workshops Abbreviated Journal  
  Volume Issue Pages 3595-3605  
  Keywords  
  Abstract Learning continually from non-stationary data streams is a long-standing goal and a challenging problem in machine learning. Recently, we have witnessed a renewed and fast-growing interest in continual learning, especially within the deep learning community. However, algorithmic solutions are often difficult to re-implement, evaluate and port across different settings, where even results on standard benchmarks are hard to reproduce. In this work, we propose Avalanche, an open-source end-to-end library for continual learning research based on PyTorch. Avalanche is designed to provide a shared and collaborative codebase for fast prototyping, training, and reproducible evaluation of continual learning algorithms.  
  Address Virtual; June 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPRW  
  Notes LAMP; 600.120 Approved no  
  Call Number Admin @ si @ LPC2021 Serial 3567  
Permanent link to this record
 

 
Author Marc Masana; Tinne Tuytelaars; Joost Van de Weijer edit   pdf
doi  openurl
  Title Ternary Feature Masks: zero-forgetting for task-incremental learning Type Conference Article
  Year 2021 Publication (up) 34th IEEE Conference on Computer Vision and Pattern Recognition Workshops Abbreviated Journal  
  Volume Issue Pages 3565-3574  
  Keywords  
  Abstract We propose an approach without any forgetting to continual learning for the task-aware regime, where at inference the task-label is known. By using ternary masks we can upgrade a model to new tasks, reusing knowledge from previous tasks while not forgetting anything about them. Using masks prevents both catastrophic forgetting and backward transfer. We argue -- and show experimentally -- that avoiding the former largely compensates for the lack of the latter, which is rarely observed in practice. In contrast to earlier works, our masks are applied to the features (activations) of each layer instead of the weights. This considerably reduces the number of mask parameters for each new task; with more than three orders of magnitude for most networks. The encoding of the ternary masks into two bits per feature creates very little overhead to the network, avoiding scalability issues. To allow already learned features to adapt to the current task without changing the behavior of these features for previous tasks, we introduce task-specific feature normalization. Extensive experiments on several finegrained datasets and ImageNet show that our method outperforms current state-of-the-art while reducing memory overhead in comparison to weight-based approaches.  
  Address Virtual; June 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPRW  
  Notes LAMP; 600.120 Approved no  
  Call Number Admin @ si @ MTW2021 Serial 3565  
Permanent link to this record
 

 
Author Debora Gil; Guillermo Torres edit   pdf
openurl 
  Title A multi-shape loss function with adaptive class balancing for the segmentation of lung structures Type Conference Article
  Year 2020 Publication (up) 34th International Congress and Exhibition on Computer Assisted Radiology & Surgery Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address Virtual; June 2020  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CARS  
  Notes IAM; 600.139; 600.145 Approved no  
  Call Number Admin @ si @ GiT2020 Serial 3472  
Permanent link to this record
 

 
Author Ahmed M. A. Salih; Ilaria Boscolo Galazzo; Zahra Zahra Raisi-Estabragh; Steffen E. Petersen; Polyxeni Gkontra; Karim Lekadir; Gloria Menegaz; Petia Radeva edit  url
doi  openurl
  Title A new scheme for the assessment of the robustness of Explainable Methods Applied to Brain Age estimation Type Conference Article
  Year 2021 Publication (up) 34th International Symposium on Computer-Based Medical Systems Abbreviated Journal  
  Volume Issue Pages 492-497  
  Keywords  
  Abstract Deep learning methods show great promise in a range of settings including the biomedical field. Explainability of these models is important in these fields for building end-user trust and to facilitate their confident deployment. Although several Machine Learning Interpretability tools have been proposed so far, there is currently no recognized evaluation standard to transfer the explainability results into a quantitative score. Several measures have been proposed as proxies for quantitative assessment of explainability methods. However, the robustness of the list of significant features provided by the explainability methods has not been addressed. In this work, we propose a new proxy for assessing the robustness of the list of significant features provided by two explainability methods. Our validation is defined at functionality-grounded level based on the ranked correlation statistical index and demonstrates its successful application in the framework of brain aging estimation. We assessed our proxy to estimate brain age using neuroscience data. Our results indicate small variability and high robustness in the considered explainability methods using this new proxy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CBMS  
  Notes MILAB; no proj Approved no  
  Call Number Admin @ si @ SBZ2021 Serial 3629  
Permanent link to this record
 

 
Author Jorge Bernal; F. Javier Sanchez; Fernando Vilariño edit   pdf
doi  openurl
  Title Impact of Image Preprocessing Methods on Polyp Localization in Colonoscopy Frames Type Conference Article
  Year 2013 Publication (up) 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society Abbreviated Journal  
  Volume Issue Pages 7350 - 7354  
  Keywords  
  Abstract In this paper we present our image preprocessing methods as a key part of our automatic polyp localization scheme. These methods are used to assess the impact of different endoluminal scene elements when characterizing polyps. More precisely we tackle the influence of specular highlights, blood vessels and black mask surrounding the scene. Experimental results prove that the appropriate handling of these elements leads to a great improvement in polyp localization results.  
  Address Osaka; Japan; July 2013  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1557-170X ISBN Medium  
  Area 800 Expedition Conference EMBC  
  Notes MV; 600.047; 600.060;SIAI Approved no  
  Call Number Admin @ si @ BSV2013 Serial 2286  
Permanent link to this record
 

 
Author Shiqi Yang; Yaxing Wang; Kai Wang; Shangling Jui; Joost Van de Weijer edit  openurl
  Title Attracting and Dispersing: A Simple Approach for Source-free Domain Adaptation Type Conference Article
  Year 2022 Publication (up) 36th Conference on Neural Information Processing Systems Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract We propose a simple but effective source-free domain adaptation (SFDA) method.
Treating SFDA as an unsupervised clustering problem and following the intuition
that local neighbors in feature space should have more similar predictions than
other features, we propose to optimize an objective of prediction consistency. This
objective encourages local neighborhood features in feature space to have similar
predictions while features farther away in feature space have dissimilar predictions, leading to efficient feature clustering and cluster assignment simultaneously. For efficient training, we seek to optimize an upper-bound of the objective resulting in two simple terms. Furthermore, we relate popular existing methods in domain adaptation, source-free domain adaptation and contrastive learning via the perspective of discriminability and diversity. The experimental results prove the superiority of our method, and our method can be adopted as a simple but strong baseline for future research in SFDA. Our method can be also adapted to source-free open-set and partial-set DA which further shows the generalization ability of our method.
 
  Address Virtual; November 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference NEURIPS  
  Notes LAMP; 600.147 Approved no  
  Call Number Admin @ si @ YWW2022a Serial 3792  
Permanent link to this record
 

 
Author Senmao Li; Joost Van de Weijer; Yaxing Wang; Fahad Shahbaz Khan; Meiqin Liu; Jian Yang edit  url
doi  openurl
  Title 3D-Aware Multi-Class Image-to-Image Translation with NeRFs Type Conference Article
  Year 2023 Publication (up) 36th IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 12652-12662  
  Keywords  
  Abstract Recent advances in 3D-aware generative models (3D-aware GANs) combined with Neural Radiance Fields (NeRF) have achieved impressive results. However no prior works investigate 3D-aware GANs for 3D consistent multiclass image-to-image (3D-aware 121) translation. Naively using 2D-121 translation methods suffers from unrealistic shape/identity change. To perform 3D-aware multiclass 121 translation, we decouple this learning process into a multiclass 3D-aware GAN step and a 3D-aware 121 translation step. In the first step, we propose two novel techniques: a new conditional architecture and an effective training strategy. In the second step, based on the well-trained multiclass 3D-aware GAN architecture, that preserves view-consistency, we construct a 3D-aware 121 translation system. To further reduce the view-consistency problems, we propose several new techniques, including a U-net-like adaptor network design, a hierarchical representation constrain and a relative regularization loss. In exten-sive experiments on two datasets, quantitative and qualitative results demonstrate that we successfully perform 3D-aware 121 translation with multi-view consistency. Code is available in 3DI2I.  
  Address Vancouver; Canada; June 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPR  
  Notes LAMP Approved no  
  Call Number Admin @ si @ LWW2023b Serial 3920  
Permanent link to this record
 

 
Author Hugo Bertiche; Niloy J Mitra; Kuldeep Kulkarni; Chun Hao Paul Huang; Tuanfeng Y Wang; Meysam Madadi; Sergio Escalera; Duygu Ceylan edit  url
doi  openurl
  Title Blowing in the Wind: CycleNet for Human Cinemagraphs from Still Images Type Conference Article
  Year 2023 Publication (up) 36th IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 459-468  
  Keywords  
  Abstract Cinemagraphs are short looping videos created by adding subtle motions to a static image. This kind of media is popular and engaging. However, automatic generation of cinemagraphs is an underexplored area and current solutions require tedious low-level manual authoring by artists. In this paper, we present an automatic method that allows generating human cinemagraphs from single RGB images. We investigate the problem in the context of dressed humans under the wind. At the core of our method is a novel cyclic neural network that produces looping cinemagraphs for the target loop duration. To circumvent the problem of collecting real data, we demonstrate that it is possible, by working in the image normal space, to learn garment motion dynamics on synthetic data and generalize to real data. We evaluate our method on both synthetic and real data and demonstrate that it is possible to create compelling and plausible cinemagraphs from single RGB images.  
  Address Vancouver; Canada; June 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPR  
  Notes HUPBA Approved no  
  Call Number Admin @ si @ BMK2023 Serial 3921  
Permanent link to this record
 

 
Author Dipam Goswami; Yuyang Liu ; Bartlomiej Twardowski; Joost Van de Weijer edit  url
openurl 
  Title FeCAM: Exploiting the Heterogeneity of Class Distributions in Exemplar-Free Continual Learning Type Conference Article
  Year 2023 Publication (up) 37th Annual Conference on Neural Information Processing Systems Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Poster  
  Address New Orleans; USA; December 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference NEURIPS  
  Notes LAMP Approved no  
  Call Number Admin @ si @ GLT2023 Serial 3934  
Permanent link to this record
 

 
Author Kai Wang; Fei Yang; Shiqi Yang; Muhammad Atif Butt; Joost Van de Weijer edit  url
openurl 
  Title Dynamic Prompt Learning: Addressing Cross-Attention Leakage for Text-Based Image Editing Type Conference Article
  Year 2023 Publication (up) 37th Annual Conference on Neural Information Processing Systems Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Poster  
  Address New Orleans; USA; December 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference NEURIPS  
  Notes LAMP Approved no  
  Call Number Admin @ si @ WYY2023 Serial 3935  
Permanent link to this record
 

 
Author ChuanMing Fang; Kai Wang; Joost Van de Weijer edit   pdf
url  openurl
  Title IterInv: Iterative Inversion for Pixel-Level T2I Models Type Conference Article
  Year 2023 Publication (up) 37th Annual Conference on Neural Information Processing Systems Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Large-scale text-to-image diffusion models have been a ground-breaking development in generating convincing images following an input text prompt. The goal of image editing research is to give users control over the generated images by modifying the text prompt. Current image editing techniques are relying on DDIM inversion as a common practice based on the Latent Diffusion Models (LDM). However, the large pretrained T2I models working on the latent space as LDM suffer from losing details due to the first compression stage with an autoencoder mechanism. Instead, another mainstream T2I pipeline working on the pixel level, such as Imagen and DeepFloyd-IF, avoids this problem. They are commonly composed of several stages, normally with a text-to-image stage followed by several super-resolution stages. In this case, the DDIM inversion is unable to find the initial noise to generate the original image given that the super-resolution diffusion models are not compatible with the DDIM technique. According to our experimental findings, iteratively concatenating the noisy image as the condition is the root of this problem. Based on this observation, we develop an iterative inversion (IterInv) technique for this stream of T2I models and verify IterInv with the open-source DeepFloyd-IF model. By combining our method IterInv with a popular image editing method, we prove the application prospects of IterInv. The code will be released at \url{this https URL}.  
  Address New Orleans; USA; December 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference NEURIPS  
  Notes LAMP Approved no  
  Call Number Admin @ si @ FWW2023 Serial 3936  
Permanent link to this record
 

 
Author Guillermo Torres; Debora Gil; Antoni Rosell; S. Mena; Carles Sanchez edit  openurl
  Title Virtual Radiomics Biopsy for the Histological Diagnosis of Pulmonary Nodules Type Conference Article
  Year 2023 Publication (up) 37th International Congress and Exhibition is organized by Computer Assisted Radiology and Surgery Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Pòster  
  Address Munich; Germany; June 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CARS  
  Notes IAM Approved no  
  Call Number Admin @ si @ TGR2023a Serial 3950  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: