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Abstract— In this paper we present our image preprocessing
methods as a key part of our automatic polyp localization
scheme. These methods are used to assess the impact of different
endoluminal scene elements when characterizing polyps. More
precisely we tackle the influence of specular highlights, blood
vessels and black mask surrounding the scene. Experimental
results prove that the appropriate handling of these elements
leads to a great improvement in polyp localization results.

I. INTRODUCTION

Colorectal cancer is the third most common cancer in
incidence and the fourth most common cause of cancer
death worldwide. Its survival rate decreases the later it
is detected [1], hence the importance of colon screening
techniques such as colonoscopy. Although colonoscopy is
still the gold standard for colon screening, it has some
drawbacks being polyp miss-rate (reported to be as high as
6% [2]) the most relevant problem. The work presented in
this paper is enclosed into the field of intelligent systems for
colonoscopy which aim at providing additional information
to the colonoscopy procedure. More precisely we are focused
on the development of automatic polyp localization methods,
which still nowadays present several difficulties.

We present here the first study that takes into account
the impact of different endoluminal scene elements in polyp
localization results. We will address the influence of specular
highlights, blood vessels and the black mask that surrounds
the endoluminal scene.

Our automatic polyp localization method integrates valley
information to locate the polyp. We must discern between
valley information that comes from polyps and the one
that is related to other elements in order to improve polyp
localization results. The novelty of the work presented is
the assessment of the impact that different elements of the
endoluminal scene have on polyp localization results, as the
three of them are also source of valley information which
can affect the performance of our algorithms.

The structure of the paper is as follows: in Section II we
introduce previous approaches on polyp characterization.We
introduce our model of appearance for polyps in Section
III. Our polyp localization method, in which the image
preprocessing methods are enclosed, is presented in Section
IV. In Section V we show our experimental setup along with
image preprocessing and polyp localization results. Finally
we finish this paper in Section VI with the main conclusions
extracted along with proposals for future work.
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II. RELATED WORK

The description and characterization of endoluminal scene
elements has been recently addressed in the literature. Al-
though the majority of the available works are related to
polyp characterization, there are also some works related to
other elements such as the lumen [3] or specular highlights
[4]. Other works devoted to either enhance the quality of
colonoscopy frames or to discard low quality frames [3].

Related to polyp characterization, we can divide the exist-
ing bibliography [3] into three separate groups: 1) Shape; 2)
Texture and 3) Color. Related to shape, we can also make a
subdivision between two different types of methods: based
on the curvature of the boundaries [5] or based on shape
fitting [6]. There is a number of works on the field of texture
description using specific texture descriptors such as wavelets
wavelet descriptors, local binary patterns or co-ocurrence
matrices [7]. The work of [8] presents MPEG-7 texture and
color descriptors used in polyp characterization methods.Our
previous work [9] departs from this specific approaches by
building a general model of polyp appearance which takes
into account both the processes of image acquisition and
image generation. This model defines polyps delimited by
boundaries corresponding to valleys in the intensity image
as explained in the next section.

III. M ODEL OF APPEARANCE FORPOLYPS

In order to define our model of appearance for polyps
we use an a priori model about the polyp and a model of
the illumination. In this case, for the sake of simplicity we
consider polyps as semi-spherical shapes that protrude from
the colon wall plane [9]. We also consider that polyp’s sur-
face is homogeneous and its reflectance can be approximated
by the Phong’s illumination model [10]. We can model the
colonoscope by a pinhole camera and a punctual illumination
source placed in the same position. As can be seen in Figure
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Fig. 1. Model of appearance and illumination of polyps: (a) Graphical
representation of an illuminated prominent surface (a polyp); (b) Synthetic
model rendering of a polyp (c) Corresponding grey level profile of both
graphical and synthetical representations of the polyp .



1 the center of protruding objects, such as polyps, reflects the
incident light back to the camera but lateral surfaces reflect
light outside the camera.

Taking this into account, the characterization of the polyp
is obtained through the shadings related to valleys in the
intensity image as can be seen in Figure 2 where we intensity
valleys constitute the boundary of the polyp. The detection
of polyps is thus linked to the identification of the valleys
that constitute their boundaries.

(a) (b)

Fig. 2. Presence of intensity valleys in polyp boundaries: (a) Original
image; (b) Grey level profile under the yellow line drawn in (a).

In order to obtain valley information we use the Multilocal
Creaseness valley detector that was presented in [11] - other
alternatives such asSecond Derivative of Gaussians[12]
could provide equivalent results -. In our case we opt to
use the former since its output is more geometrical, leading
to eliminate the response that non-desired structures may
provide. Our valley detector is good at localizing the valleys
in the image but it fails in terms of quantifying them, as its
output is somewhat binary. In order to solve this the output
of a valley detector (V ) can be multiplied by the output
of the morphological gradient (Mgrad) to generate a Depth
Of Valleys imageDoV = V · Mgrad [9]. DoV image will
ideally present high values in pixels that constitute polyp
boundary. We use this DoV image as the source of our
polyp localization algorithm but, as it will be seen in the next
section, we need to eliminate non-polyp valley information
to make our algorithms perform robustly.

IV. M ETHODOLOGY

Our polyp localization processing scheme consists of three
different stages: 1) Image preprocessing; 2) Depth of Valleys
Accumulation (DOVA) energy maps and 3) Final polyp
location from the maxima of DOVA energy map.

A. Image Preprocessing

Unfortunately, as can be seen in Figure 3, polyps are not
the only source of valley information. We study four differ-
ent sources of valley information in colonoscopy images:
1) Polyps; 2) Specular highlights; 3) Black mask and 4)
Blood vessels. As our polyp localization method uses valley
information to give its output, it is necessary to address
the effect of the different non-polyp sources to ease later
processing stages.
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Fig. 3. Valley information sources: (a) Original image; (b)Valley image;
(c) Manually-marked valley image. Marked valleys are from polyps (red),
blood vessels (blue), specular highlights (yellow) and black mask (orange).

a) Specular highlights: The impact of specular high-
lights is twofold: we can have valley information within
the specular highlight area, and we can also have this
information around the specular highlight. We apply two
different operations: 1) detection and 2) inpainting.

1) Detection: our method extends current state-of-the-
art in colonoscopy videos [4] (Figure 4 (c)). In our case,
we are concerned on those pixels that are suspected to
be part of a specular highlight but they can not be easily
identified. We assume that the intensity value inside the
specular highlight is higher than its surroundings and pixels
nearby to specular highlights will continue having higher
intensity values, although smaller than inside the specularity.
We find these pixels by calculating the difference between
the original image and its median (not considering pixels
already part of specular highlight) so we can obtain which
pixels in the image have a intensity value marginally higher
than its neighborhoods. Then, by means of a threshold value,
we keep only those where the difference is higher.

(a) (b) (c)

Fig. 4. Specular highlights detection: (a) Original image;(b) Extension
of the detection obtained with [4]; (c) Zoom of the red squarearea in the
detection mask. True positive pixels are painted in white and those TP pixels
that we detect with our method that were not detected by [4] inblue.

2) Inpainting: The inpainting method consists of two
different stages:

a) Diffusion: In this stage we diffuse values from the
original image into pixels with no value which are under
the detection maskM . We track the positions of the pixels
underM and, for each of them we perform as follows: we
obtain a3× 3 neighborhood around the pixel and change its
original value by the mean value of the valid neighbors. Valid
neighbours are those pixels which either do not belong to the
originalM mask or that have already being modified by the
diffusion process. This process is repeated until every pixel
underM has a new value. Once this happens, we repeat the
process until the difference between the new and the previous
value of pixels underM is smaller than a threshold valuesth.
A graphical example of the diffusion algorithm is shown in
Figure 5. We can see that for the calculation of the diffused



value of the pixels underM , which are painted in white, we
only use information from valid neighbors, painted in orange
in the image.

(a) (b) (c)

Fig. 5. Example of the diffusion stage of the inpainting algorithm for
one pixel: (a) Representation of the initial stage of the diffusion algorithm:
pixels underM mask are painted in white whereas pixels outsideM are
painted in orange; (b) Calculation of the new value from valid neighbors,
and (c) Image with new value obtained.

The complete diffusion algorithm is:

Algorithm 1: Inpainting diffusion algorithm
Data: Diffusion(I,FM ,MC)
Arg: (I: original image,M : detection mask,MC:
minimum change threshold)
Result: Diffused image(Id)
Initialization of valid neighbors mask;

1 V NM = ¬M ;
Calculation of diffused values for pixels in M;

2 repeat while the image is modified oversth
3 stop = true;
4 forall the ~x ∈ I : M(~x) == 1 do

Definition of a neighborhood around a pixel;
5 Neigh = {~p|~p ∈

Neighborhood(~x), V NM(~p) == 1};
6 if #Neigh > 0 then

Calculation of the diffused value;

7 nv =
∑

~p∈Neigh Id(~p)

#Neigh
;

Calculation of the stop flag;
8 if V NM(~x) == 1 then

if |nv − Id(~x)| > sth then
stop = false;

else
stop = false;

end
Actualization of the diffused image value;

9 Id(~x) = nv;
end

end
until stop == true;

b) Obtention of the final inpainted image:To create the
final inpainted image we also have to consider that if we do
a direct substitution of the pixels underM there will still
remain a clear frontier between pixels inside and outside the
final image, as happens with the method explained in [4] (an
example of this is shown in Figure 6 (b)). In order to solve
this we create an extended mask which ponders the way
we combine the original imageIo and the diffusedId in the
final inpaintedInp image. This extended maskM1 is created

by dilating the originalM mask with a circular structural
element and later convolving the result with a gaussian
kernel. Once this mask is obtained the final inpainted image
Inp is calculated as:

Inp = M1 · Io + (1 −M1) · Id (1)

where Io(x, y) and Id(x, y) respectively correspond to the
original image and the diffused image. In pixels under
M mask, the intensity values are completely replaced by
their corresponding values in theId. On the other hand, as
we depart from the originalM mask, the contribution of
the original Io values increases. An example of the final
inpainted image can be seen in Figure 6 (c).

(a) (b) (c)

Fig. 6. Comparison of specular highlights inpainting results: (a) Original
image; (b) Inpainted impage obtained by using method explained in [4]; (c)
Inpainted image obtained with the method proposed in this paper.

b) Black mask: Colonoscopy video frames are natively
acquired with a black mask (see Figure 3 (a)). The borders
of the black mask do generate valley information, as can be
seen in Figure 3 (c). In order to cope with this problem we
have two alternatives, either to crop the image and analyze
what is within the limits of the black mask, or to do an
inpainting below the black mask. In our case we have opted
for the second because by cropping we loose boundary’s
information, potentially showing polyp content.

c) Blood vessels:Blood vessels segmentation is a com-
plicated task out of the scope of our current research, but
it is possible to mitigate their impact in terms of valley
information. In this case we are interested in finding a
color channel that both enhances polyp boundary information
while mitigating blood vessels. We have explored the use
of several color spaces such as sRGB, HSV or CieLab and
all the possible combinations (including channel subtraction)
within a given color channel.

B. DOVA energy maps

Once we have a cleaner valley image after the application
of our image preprocessing methods, we are able to impose
more restrictions in the final stage of our polyp localiza-
tion method. We defined in our previous work [9] Sector
Accumulation Depth of Valley Accumulation (SA-DOVA)
energy maps integrating DoV information, which combined
valley localization provided by a valley detector with a better
quantization provided by morphological gradient. SA-DOVA
was built by placing a series of radial sectors centred on
each pixel and summing the maxima of DoV image under
each sector. The rationale behind this approach was that



pixels inside the polyp should be surrounded by boundaries
constituted by pixels with high value of the DoV image.

SA-DOVA is heavily affected by how the DoV image
is in a way such if the source image is clean it works
as suspected, but under the presence of abundant valley
information related to non-polyp elements of the scene, its
performance gets damaged. A simple but effective solution
to eliminate noise and also benefit circularity is the use of
median in the accumulation process instead of the sum of the
maxima under each sector (See Eq(2)). The novel Median
SA-DOVA (MSA-DOVA) is calculated as follows:

MaxL(~x, α) = max
r

{DoV (~x+ r ∗ (cos(α), sin(α)))},

AccMSA(~x) = Med
α

(MaxL(~x, α)), (2)

AccSA(~x) =
∑

α

(MaxL(~x, α)),

where α ∈ [0, 2π] and r ∈ [Rmin, Rmax], Rmin and
Rmax correspond respectively to the minimum and maxi-
mum radius of the sectors used in the accumulation process.
We show in Figure 7 a qualitative comparison between
the results obtained by SA-DOVA and MSA-DOVA. As
we use the position of the maxima of the energy map to
locate the polyp we will be interested in having a higher
value associated to polyp boundaries than to other structures
in the image. We can see in Figure 7 (b) that by using
SA-DOVA there is no difference in terms of maxima of
accumulation between a non-continuous structure composed
by a few pixels with high DoV value (maxima value:0.93)
and a continuous structure composed by more pixels with
smaller DoV value (maxima value:0.93). By changing from
sum-based to median-based accumulation we keep a similar
maxima value under the continuous structure (0.95) but we
almost eliminate accumulation inside the non-continuous one
(maxima value:0.12).

(a) (b) (c)

Fig. 7. Impact of non-continuous boundaries with high DoV value on
the output of SA-DOVA energy maps: (a) Original image; (b) SA-DOVA
energy map; (c) Median-DOVA energy map.

V. EXPERIMENTAL RESULTS

In order to assess the performance of our methods we
will use the, up to our knowledge, only available labeled
database of colonoscopy videos, which was introduced in
[9]. In this case, as in the original paper, we will only use a
subset of 300 frames from the database, as some of the videos
either content too much fecal content or do not have enough
quality to be analyzed. In order to tune the parameters for
the MSA-DOVA we used 30 images, different from the
ones in the test database and we selected as final parameter
values those which yielded better localization results. More
precisely we set the minimum and maximum radii to 30 and

130 respectively and we also fixed to 180 the number of
radial sectors used in the accumulation process.

We will perform two different experiments: a) Evalua-
tion of the different image preprocessing methods, and b)
assessment of the impact of image preprocessing in polyp
localization results.

A. Image preprocessing results

For the case ofspecular highlights detectionwe will
compare the performance of our method with two general
state-of-the-art approaches [13], [14] and with the method
we base our approach on [4]. In this case we use as a metric
the Detection Rate (DR), which is defined as the percentage
of specular highlights pixels that have been detected by each
method. Results from Table I show that our contribution
improves the state-of-the-art in specular highlight detection
[4]. The errors in our approach are caused by failing on
detecting some pixels close to the specular highlight but not
part of it.

Method Yang et al Yoon et al Arnold et al Bernal et al
Detection rate% 53.04% 42.12% 81.44% 84.20%

TABLE I

COMPARISON OF SPECULAR HIGHLIGHT DETECTION METHODS.

For the case ofspecular highlights inpainting we will
only compare our method with current state-of-the-art in
colonoscopy [4] and in this case we will measure the ratio
between the valley energy around the specular highlight
before (E0) and after the inpainting (Einp). Both methods
have the sameM mask as input. As can be seen from
Table II, by using our method we improve the mitigation
of specular highlights-originated valleys.

Method E0 Einp %(Einp/E0)
Arnold et al 1083.99 574.38 52.98%
Bernal et al 1083.99 445.84 41.13%

TABLE II

COMPARISON OF SPECULAR HIGHLIGHTS INPAINTING METHODS.

The objective ofblood vessels mitigationexperiment is to
test, in terms the two low-level image processing algorithms
used to generate the DoV image (valley detection and mor-
phological gradient), if we can mitigate the effects of blood
vessels in the image without losing polyp information. We
selected and annotated a subset of 29 images with high blood
vessel presence to test our mitigation method. We measure,
for each input image, the relative difference (%) in energy
under both vessels and polyp contour masks from the original
value obtained from the grey scale image. We summarize
the main results obtained in Table III. We can observe
from the table that by using the B channel of the sRGB
image we mitigate blood vessels’ energy while enhancing
polyp contours for both valley detection and morphological
gradient.



Measure Polyp Vessel Difference
Morph. gradient 9.21% −0.44% 9.65%
Valley detection 20.33% −6.61% 26.95%
Depth of valleys 1.87% −0.02% 1.89%

TABLE III

BLOOD VESSELS MITIGATION RESULTS BY USING CHANNELB OF THE

SRGB IMAGE

B. Polyp localization results

We show a graph which presents the polyp localization
results based on the application of image preprocessing
methods in Figure 8:

Fig. 8. Break down of the number of images with correct polyp localization
(total of images: 300) according to the preprocessing applied to the original
image and how the accumulation is performed.

There are several conclusions that can be extracted from
this Figure:

1) The preprocessing method that has more impact on
polyp localization results is blood vessels mitigation,
followed by specular highlights correction.

2) By applying all the preprocessing methods to the orig-
inal image and by changing the accumulation method
we improve our polyp localization results in almost 90
images (30%) - see Figure 9)-.

3) The change of summing-based to median-based accu-
mulation results on an improvement of polyp localiza-
tion results applied on the greyscale image.

(a) (b) (c)

Fig. 9. Maxima of accumulation both inside (green) and outside (red)
polyp contour (blue) for: (a) No preprocessed image and SA-DOVA; (b)
Full preprocessed image and SA-DOVA; (c) Full preprocessedimage and
MSA-DOVA;

VI. CONCLUSIONS ANDFUTURE WORK

Considering that valley information is the source of infor-
mation of our polyp localization algorithm, in this paper we
tackled the impact of several elements of the endoluminal
scene (specular highlights, blood vessels and black mask)
that also give valley response. For the case of specular high-
lights we introduced our detection and inpainting algorithms
that improve general and specific approaches. Our preliminar
study on blood vessels mitigation shows that the use of the B

channel of the sRGB image leads to a decrease in the valley
information related to blood vessels. Finally we applied the
same inpainting method to the black mask superimposed
to the endoluminal scene. Once preprocessing is done we
apply a simple but effective improvement to a previous
iteration of DOVA energy maps as the last step of the polyp
localization algorithm. The experimental results show that
all the three preprocessing methods have an impact on the
overall performance on polyp localization methods although
blood vessels mitigation and specular highlights correction
are the techniques that lead to a better improvement. By
means of the proposed preprocessing we improve polyp
localization results in almost30% of the images, which
confirms its necessity.

The future work will involve the consideration of the rest
of elements of the endoluminal scene such as the lumen or
wrinkles and folds along with a development of a future
scale-space implementation of the DOVA algorithm.

ACKNOWLEDGMENTS

This work was supported in part the Spanish Government
through the founded projects ”COLON-QA” (TIN2009 −
10435) and ”FISIOLOGICA” (TIN2012− 33116).

REFERENCES

[1] C. Eng, P. Lynch, and J. Skibber, “Colon cancer,” in60 Years of
Survival Outcomes at The University of Texas MD Anderson Cancer
Center. Springer, 2013, pp. 77–84.

[2] B. Bressler, L. Paszat, Z. Chen, D. Rothwell, C. Vinden, and L. Rabe-
neck, “Rates of new or missed colorectal cancers after colonoscopy
and their risk factors: A population-based analysis,”Gastroenterology,
vol. 132, no. 1, pp. 96–102, 2007.

[3] J. Bernal, F. Vilariño, and J. Sánchez,Colonoscopy Book 1: Towards
Intelligent Systems for Colonoscopy. In-Tech, 2011.

[4] M. Arnold, A. Ghosh, S. Ameling, and G. Lacey, “Automaticsegmen-
tation and inpainting of specular highlights for endoscopic imaging,”
Journal on Image and Video Processing, vol. 2010, p. 9, 2010.

[5] H. Zhu, Y. Fan, and Z. Liang, “Improved Curvature Estimation for
Shape Analysis in Computer-Aided Detection of Colonic Polyps,”
Beijing, China, p. 19, 2010.

[6] S. Hwang, J. Oh, and W. Tavanapong, “Polyp detection in colonoscopy
video using elliptical shape feature,” inImage Processing, 2007. ICIP
2007. IEEE International Conference on, vol. 2. IEEE, 2007, pp.
II–465.

[7] S. Ameling, S. Wirth, D. Paulus, G. Lacey, and F. Vilariño, “Texture-
based polyp detection in colonoscopy,”Bildverarbeitung für die Medi-
zin 2009, pp. 346–350, 2009.

[8] M. Coimbra and J. Cunha, “MPEG-7 visual descriptors and contribu-
tions for automated feature extraction in capsule endoscopy,” Circuits
and Systems for Video Technology, IEEE Transactions on, vol. 16,
no. 5, pp. 628–637, 2006.

[9] J. Bernal, J. Sánchez, and F. Vilariño, “Towards automatic polyp
detection with a polyp appearance model,”Pattern Recognition, 2012.

[10] B. T. Phong, “Illumination for computer generated pictures,” Commu-
nications of ACM, vol. 18, no. 6, pp. 311–317, 1975.
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