Xialei Liu, Joost Van de Weijer, & Andrew Bagdanov. (2018). Leveraging Unlabeled Data for Crowd Counting by Learning to Rank. In 31st IEEE Conference on Computer Vision and Pattern Recognition (pp. 7661–7669).
Abstract: We propose a novel crowd counting approach that leverages abundantly available unlabeled crowd imagery in a learning-to-rank framework. To induce a ranking of
cropped images , we use the observation that any sub-image of a crowded scene image is guaranteed to contain the same number or fewer persons than the super-image. This allows us to address the problem of limited size of existing
datasets for crowd counting. We collect two crowd scene datasets from Google using keyword searches and queryby-example image retrieval, respectively. We demonstrate how to efficiently learn from these unlabeled datasets by incorporating learning-to-rank in a multi-task network which simultaneously ranks images and estimates crowd density maps. Experiments on two of the most challenging crowd counting datasets show that our approach obtains state-ofthe-art results.
Keywords: Task analysis; Training; Computer vision; Visualization; Estimation; Head; Context modeling
|
|
Abel Gonzalez-Garcia, Joost Van de Weijer, & Yoshua Bengio. (2018). Image-to-image translation for cross-domain disentanglement. In 32nd Annual Conference on Neural Information Processing Systems.
|
|
Chenshen Wu, Luis Herranz, Xialei Liu, Joost Van de Weijer, & Bogdan Raducanu. (2018). Memory Replay GANs: Learning to Generate New Categories without Forgetting. In 32nd Annual Conference on Neural Information Processing Systems (pp. 5966–5976).
Abstract: Previous works on sequential learning address the problem of forgetting in discriminative models. In this paper we consider the case of generative models. In particular, we investigate generative adversarial networks (GANs) in the task of learning new categories in a sequential fashion. We first show that sequential fine tuning renders the network unable to properly generate images from previous categories (ie forgetting). Addressing this problem, we propose Memory Replay GANs (MeRGANs), a conditional GAN framework that integrates a memory replay generator. We study two methods to prevent forgetting by leveraging these replays, namely joint training with replay and replay alignment. Qualitative and quantitative experimental results in MNIST, SVHN and LSUN datasets show that our memory replay approach can generate competitive images while significantly mitigating the forgetting of previous categories.
|
|
Lu Yu, Vacit Oguz Yazici, Xialei Liu, Joost Van de Weijer, Yongmei Cheng, & Arnau Ramisa. (2019). Learning Metrics from Teachers: Compact Networks for Image Embedding. In 32nd IEEE Conference on Computer Vision and Pattern Recognition (pp. 2907–2916).
Abstract: Metric learning networks are used to compute image embeddings, which are widely used in many applications such as image retrieval and face recognition. In this paper, we propose to use network distillation to efficiently compute image embeddings with small networks. Network distillation has been successfully applied to improve image classification, but has hardly been explored for metric learning. To do so, we propose two new loss functions that model the
communication of a deep teacher network to a small student network. We evaluate our system in several datasets, including CUB-200-2011, Cars-196, Stanford Online Products and show that embeddings computed using small student networks perform significantly better than those computed using standard networks of similar size. Results on a very compact network (MobileNet-0.25), which can be
used on mobile devices, show that the proposed method can greatly improve Recall@1 results from 27.5% to 44.6%. Furthermore, we investigate various aspects of distillation for embeddings, including hint and attention layers, semisupervised learning and cross quality distillation.
|
|
Kai Wang, Fei Yang, & Joost Van de Weijer. (2022). Attention Distillation: self-supervised vision transformer students need more guidance. In 33rd British Machine Vision Conference.
Abstract: Self-supervised learning has been widely applied to train high-quality vision transformers. Unleashing their excellent performance on memory and compute constraint devices is therefore an important research topic. However, how to distill knowledge from one self-supervised ViT to another has not yet been explored. Moreover, the existing self-supervised knowledge distillation (SSKD) methods focus on ConvNet based architectures are suboptimal for ViT knowledge distillation. In this paper, we study knowledge distillation of self-supervised vision transformers (ViT-SSKD). We show that directly distilling information from the crucial attention mechanism from teacher to student can significantly narrow the performance gap between both. In experiments on ImageNet-Subset and ImageNet-1K, we show that our method AttnDistill outperforms existing self-supervised knowledge distillation (SSKD) methods and achieves state-of-the-art k-NN accuracy compared with self-supervised learning (SSL) methods learning from scratch (with the ViT-S model). We are also the first to apply the tiny ViT-T model on self-supervised learning. Moreover, AttnDistill is independent of self-supervised learning algorithms, it can be adapted to ViT based SSL methods to improve the performance in future research.
|
|
Kai Wang, Chenshen Wu, Andrew Bagdanov, Xialei Liu, Shiqi Yang, Shangling Jui, et al. (2022). Positive Pair Distillation Considered Harmful: Continual Meta Metric Learning for Lifelong Object Re-Identification. In 33rd British Machine Vision Conference.
Abstract: Lifelong object re-identification incrementally learns from a stream of re-identification tasks. The objective is to learn a representation that can be applied to all tasks and that generalizes to previously unseen re-identification tasks. The main challenge is that at inference time the representation must generalize to previously unseen identities. To address this problem, we apply continual meta metric learning to lifelong object re-identification. To prevent forgetting of previous tasks, we use knowledge distillation and explore the roles of positive and negative pairs. Based on our observation that the distillation and metric losses are antagonistic, we propose to remove positive pairs from distillation to robustify model updates. Our method, called Distillation without Positive Pairs (DwoPP), is evaluated on extensive intra-domain experiments on person and vehicle re-identification datasets, as well as inter-domain experiments on the LReID benchmark. Our experiments demonstrate that DwoPP significantly outperforms the state-of-the-art.
|
|
Vacit Oguz Yazici, Abel Gonzalez-Garcia, Arnau Ramisa, Bartlomiej Twardowski, & Joost Van de Weijer. (2020). Orderless Recurrent Models for Multi-label Classification. In 33rd IEEE Conference on Computer Vision and Pattern Recognition.
Abstract: Recurrent neural networks (RNN) are popular for many computer vision tasks, including multi-label classification. Since RNNs produce sequential outputs, labels need to be ordered for the multi-label classification task. Current approaches sort labels according to their frequency, typically ordering them in either rare-first or frequent-first. These imposed orderings do not take into account that the natural order to generate the labels can change for each image, e.g.\ first the dominant object before summing up the smaller objects in the image. Therefore, in this paper, we propose ways to dynamically order the ground truth labels with the predicted label sequence. This allows for the faster training of more optimal LSTM models for multi-label classification. Analysis evidences that our method does not suffer from duplicate generation, something which is common for other models. Furthermore, it outperforms other CNN-RNN models, and we show that a standard architecture of an image encoder and language decoder trained with our proposed loss obtains the state-of-the-art results on the challenging MS-COCO, WIDER Attribute and PA-100K and competitive results on NUS-WIDE.
|
|
Yaxing Wang, Abel Gonzalez-Garcia, David Berga, Luis Herranz, Fahad Shahbaz Khan, & Joost Van de Weijer. (2020). MineGAN: effective knowledge transfer from GANs to target domains with few images. In 33rd IEEE Conference on Computer Vision and Pattern Recognition.
Abstract: One of the attractive characteristics of deep neural networks is their ability to transfer knowledge obtained in one domain to other related domains. As a result, high-quality networks can be trained in domains with relatively little training data. This property has been extensively studied for discriminative networks but has received significantly less attention for generative models. Given the often enormous effort required to train GANs, both computationally as well as in the dataset collection, the re-use of pretrained GANs is a desirable objective. We propose a novel knowledge transfer method for generative models based on mining the knowledge that is most beneficial to a specific target domain, either from a single or multiple pretrained GANs. This is done using a miner network that identifies which part of the generative distribution of each pretrained GAN outputs samples closest to the target domain. Mining effectively steers GAN sampling towards suitable regions of the latent space, which facilitates the posterior finetuning and avoids pathologies of other methods such as mode collapse and lack of flexibility. We perform experiments on several complex datasets using various GAN architectures (BigGAN, Progressive GAN) and show that the proposed method, called MineGAN, effectively transfers knowledge to domains with few target images, outperforming existing methods. In addition, MineGAN can successfully transfer knowledge from multiple pretrained GANs.
|
|
Lu Yu, Bartlomiej Twardowski, Xialei Liu, Luis Herranz, Kai Wang, Yongmai Cheng, et al. (2020). Semantic Drift Compensation for Class-Incremental Learning of Embeddings. In 33rd IEEE Conference on Computer Vision and Pattern Recognition.
Abstract: Class-incremental learning of deep networks sequentially increases the number of classes to be classified. During training, the network has only access to data of one task at a time, where each task contains several classes. In this setting, networks suffer from catastrophic forgetting which refers to the drastic drop in performance on previous tasks. The vast majority of methods have studied this scenario for classification networks, where for each new task the classification layer of the network must be augmented with additional weights to make room for the newly added classes. Embedding networks have the advantage that new classes can be naturally included into the network without adding new weights. Therefore, we study incremental learning for embedding networks. In addition, we propose a new method to estimate the drift, called semantic drift, of features and compensate for it without the need of any exemplars. We approximate the drift of previous tasks based on the drift that is experienced by current task data. We perform experiments on fine-grained datasets, CIFAR100 and ImageNet-Subset. We demonstrate that embedding networks suffer significantly less from catastrophic forgetting. We outperform existing methods which do not require exemplars and obtain competitive results compared to methods which store exemplars. Furthermore, we show that our proposed SDC when combined with existing methods to prevent forgetting consistently improves results.
|
|
Yaxing Wang, Salman Khan, Abel Gonzalez-Garcia, Joost Van de Weijer, & Fahad Shahbaz Khan. (2020). Semi-supervised Learning for Few-shot Image-to-Image Translation. In 33rd IEEE Conference on Computer Vision and Pattern Recognition.
Abstract: In the last few years, unpaired image-to-image translation has witnessed remarkable progress. Although the latest methods are able to generate realistic images, they crucially rely on a large number of labeled images. Recently, some methods have tackled the challenging setting of few-shot image-to-image translation, reducing the labeled data requirements for the target domain during inference. In this work, we go one step further and reduce the amount of required labeled data also from the source domain during training. To do so, we propose applying semi-supervised learning via a noise-tolerant pseudo-labeling procedure. We also apply a cycle consistency constraint to further exploit the information from unlabeled images, either from the same dataset or external. Additionally, we propose several structural modifications to facilitate the image translation task under these circumstances. Our semi-supervised method for few-shot image translation, called SEMIT, achieves excellent results on four different datasets using as little as 10% of the source labels, and matches the performance of the main fully-supervised competitor using only 20% labeled data. Our code and models are made public at: this https URL.
|
|
Riccardo Del Chiaro, Bartlomiej Twardowski, Andrew Bagdanov, & Joost Van de Weijer. (2020). Recurrent attention to transient tasks for continual image captioning. In 34th Conference on Neural Information Processing Systems.
Abstract: Research on continual learning has led to a variety of approaches to mitigating catastrophic forgetting in feed-forward classification networks. Until now surprisingly little attention has been focused on continual learning of recurrent models applied to problems like image captioning. In this paper we take a systematic look at continual learning of LSTM-based models for image captioning. We propose an attention-based approach that explicitly accommodates the transient nature of vocabularies in continual image captioning tasks -- i.e. that task vocabularies are not disjoint. We call our method Recurrent Attention to Transient Tasks (RATT), and also show how to adapt continual learning approaches based on weight egularization and knowledge distillation to recurrent continual learning problems. We apply our approaches to incremental image captioning problem on two new continual learning benchmarks we define using the MS-COCO and Flickr30 datasets. Our results demonstrate that RATT is able to sequentially learn five captioning tasks while incurring no forgetting of previously learned ones.
|
|
Yaxing Wang, Lu Yu, & Joost Van de Weijer. (2020). DeepI2I: Enabling Deep Hierarchical Image-to-Image Translation by Transferring from GANs. In 34th Conference on Neural Information Processing Systems.
Abstract: Image-to-image translation has recently achieved remarkable results. But despite current success, it suffers from inferior performance when translations between classes require large shape changes. We attribute this to the high-resolution bottlenecks which are used by current state-of-the-art image-to-image methods. Therefore, in this work, we propose a novel deep hierarchical Image-to-Image Translation method, called DeepI2I. We learn a model by leveraging hierarchical features: (a) structural information contained in the shallow layers and (b) semantic information extracted from the deep layers. To enable the training of deep I2I models on small datasets, we propose a novel transfer learning method, that transfers knowledge from pre-trained GANs. Specifically, we leverage the discriminator of a pre-trained GANs (i.e. BigGAN or StyleGAN) to initialize both the encoder and the discriminator and the pre-trained generator to initialize the generator of our model. Applying knowledge transfer leads to an alignment problem between the encoder and generator. We introduce an adaptor network to address this. On many-class image-to-image translation on three datasets (Animal faces, Birds, and Foods) we decrease mFID by at least 35% when compared to the state-of-the-art. Furthermore, we qualitatively and quantitatively demonstrate that transfer learning significantly improves the performance of I2I systems, especially for small datasets. Finally, we are the first to perform I2I translations for domains with over 100 classes.
|
|
Vincenzo Lomonaco, Lorenzo Pellegrini, Andrea Cossu, Antonio Carta, Gabriele Graffieti, Tyler L. Hayes, et al. (2021). Avalanche: an End-to-End Library for Continual Learning. In 34th IEEE Conference on Computer Vision and Pattern Recognition Workshops (pp. 3595–3605).
Abstract: Learning continually from non-stationary data streams is a long-standing goal and a challenging problem in machine learning. Recently, we have witnessed a renewed and fast-growing interest in continual learning, especially within the deep learning community. However, algorithmic solutions are often difficult to re-implement, evaluate and port across different settings, where even results on standard benchmarks are hard to reproduce. In this work, we propose Avalanche, an open-source end-to-end library for continual learning research based on PyTorch. Avalanche is designed to provide a shared and collaborative codebase for fast prototyping, training, and reproducible evaluation of continual learning algorithms.
|
|
Marc Masana, Tinne Tuytelaars, & Joost Van de Weijer. (2021). Ternary Feature Masks: zero-forgetting for task-incremental learning. In 34th IEEE Conference on Computer Vision and Pattern Recognition Workshops (pp. 3565–3574).
Abstract: We propose an approach without any forgetting to continual learning for the task-aware regime, where at inference the task-label is known. By using ternary masks we can upgrade a model to new tasks, reusing knowledge from previous tasks while not forgetting anything about them. Using masks prevents both catastrophic forgetting and backward transfer. We argue -- and show experimentally -- that avoiding the former largely compensates for the lack of the latter, which is rarely observed in practice. In contrast to earlier works, our masks are applied to the features (activations) of each layer instead of the weights. This considerably reduces the number of mask parameters for each new task; with more than three orders of magnitude for most networks. The encoding of the ternary masks into two bits per feature creates very little overhead to the network, avoiding scalability issues. To allow already learned features to adapt to the current task without changing the behavior of these features for previous tasks, we introduce task-specific feature normalization. Extensive experiments on several finegrained datasets and ImageNet show that our method outperforms current state-of-the-art while reducing memory overhead in comparison to weight-based approaches.
|
|
Shiqi Yang, Yaxing Wang, Kai Wang, Shangling Jui, & Joost Van de Weijer. (2022). Attracting and Dispersing: A Simple Approach for Source-free Domain Adaptation. In 36th Conference on Neural Information Processing Systems.
Abstract: We propose a simple but effective source-free domain adaptation (SFDA) method.
Treating SFDA as an unsupervised clustering problem and following the intuition
that local neighbors in feature space should have more similar predictions than
other features, we propose to optimize an objective of prediction consistency. This
objective encourages local neighborhood features in feature space to have similar
predictions while features farther away in feature space have dissimilar predictions, leading to efficient feature clustering and cluster assignment simultaneously. For efficient training, we seek to optimize an upper-bound of the objective resulting in two simple terms. Furthermore, we relate popular existing methods in domain adaptation, source-free domain adaptation and contrastive learning via the perspective of discriminability and diversity. The experimental results prove the superiority of our method, and our method can be adopted as a simple but strong baseline for future research in SFDA. Our method can be also adapted to source-free open-set and partial-set DA which further shows the generalization ability of our method.
|
|
Senmao Li, Joost Van de Weijer, Yaxing Wang, Fahad Shahbaz Khan, Meiqin Liu, & Jian Yang. (2023). 3D-Aware Multi-Class Image-to-Image Translation with NeRFs. In 36th IEEE Conference on Computer Vision and Pattern Recognition (pp. 12652–12662).
Abstract: Recent advances in 3D-aware generative models (3D-aware GANs) combined with Neural Radiance Fields (NeRF) have achieved impressive results. However no prior works investigate 3D-aware GANs for 3D consistent multiclass image-to-image (3D-aware 121) translation. Naively using 2D-121 translation methods suffers from unrealistic shape/identity change. To perform 3D-aware multiclass 121 translation, we decouple this learning process into a multiclass 3D-aware GAN step and a 3D-aware 121 translation step. In the first step, we propose two novel techniques: a new conditional architecture and an effective training strategy. In the second step, based on the well-trained multiclass 3D-aware GAN architecture, that preserves view-consistency, we construct a 3D-aware 121 translation system. To further reduce the view-consistency problems, we propose several new techniques, including a U-net-like adaptor network design, a hierarchical representation constrain and a relative regularization loss. In exten-sive experiments on two datasets, quantitative and qualitative results demonstrate that we successfully perform 3D-aware 121 translation with multi-view consistency. Code is available in 3DI2I.
|
|
Dipam Goswami, Yuyang Liu, Bartlomiej Twardowski, & Joost Van de Weijer. (2023). FeCAM: Exploiting the Heterogeneity of Class Distributions in Exemplar-Free Continual Learning. In 37th Annual Conference on Neural Information Processing Systems.
|
|
Kai Wang, Fei Yang, Shiqi Yang, Muhammad Atif Butt, & Joost Van de Weijer. (2023). Dynamic Prompt Learning: Addressing Cross-Attention Leakage for Text-Based Image Editing. In 37th Annual Conference on Neural Information Processing Systems.
|
|