toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Carola Figueroa Flores; David Berga; Joost Van de Weijer; Bogdan Raducanu edit   pdf
url  openurl
  Title Saliency for free: Saliency prediction as a side-effect of object recognition Type Journal Article
  Year 2021 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 150 Issue Pages 1-7  
  Keywords Saliency maps; Unsupervised learning; Object recognition  
  Abstract Saliency is the perceptual capacity of our visual system to focus our attention (i.e. gaze) on relevant objects instead of the background. So far, computational methods for saliency estimation required the explicit generation of a saliency map, process which is usually achieved via eyetracking experiments on still images. This is a tedious process that needs to be repeated for each new dataset. In the current paper, we demonstrate that is possible to automatically generate saliency maps without ground-truth. In our approach, saliency maps are learned as a side effect of object recognition. Extensive experiments carried out on both real and synthetic datasets demonstrated that our approach is able to generate accurate saliency maps, achieving competitive results when compared with supervised methods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (down) LAMP; 600.147; 600.120 Approved no  
  Call Number Admin @ si @ FBW2021 Serial 3559  
Permanent link to this record
 

 
Author Kai Wang; Xialei Liu; Andrew Bagdanov; Luis Herranz; Shangling Jui; Joost Van de Weijer edit   pdf
doi  openurl
  Title Incremental Meta-Learning via Episodic Replay Distillation for Few-Shot Image Recognition Type Conference Article
  Year 2022 Publication CVPR 2022 Workshop on Continual Learning (CLVision, 3rd Edition) Abbreviated Journal  
  Volume Issue Pages 3728-3738  
  Keywords Training; Computer vision; Image recognition; Upper bound; Conferences; Pattern recognition; Task analysis  
  Abstract In this paper we consider the problem of incremental meta-learning in which classes are presented incrementally in discrete tasks. We propose Episodic Replay Distillation (ERD), that mixes classes from the current task with exemplars from previous tasks when sampling episodes for meta-learning. To allow the training to benefit from a large as possible variety of classes, which leads to more gener-
alizable feature representations, we propose the cross-task meta loss. Furthermore, we propose episodic replay distillation that also exploits exemplars for improved knowledge distillation. Experiments on four datasets demonstrate that ERD surpasses the state-of-the-art. In particular, on the more challenging one-shot, long task sequence scenarios, we reduce the gap between Incremental Meta-Learning and
the joint-training upper bound from 3.5% / 10.1% / 13.4% / 11.7% with the current state-of-the-art to 2.6% / 2.9% / 5.0% / 0.2% with our method on Tiered-ImageNet / Mini-ImageNet / CIFAR100 / CUB, respectively.
 
  Address New Orleans, USA; 20 June 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPRW  
  Notes (down) LAMP; 600.147 Approved no  
  Call Number Admin @ si @ WLB2022 Serial 3686  
Permanent link to this record
 

 
Author Shiqi Yang; Yaxing Wang; Kai Wang; Shangling Jui; Joost Van de Weijer edit  openurl
  Title Attracting and Dispersing: A Simple Approach for Source-free Domain Adaptation Type Conference Article
  Year 2022 Publication 36th Conference on Neural Information Processing Systems Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract We propose a simple but effective source-free domain adaptation (SFDA) method.
Treating SFDA as an unsupervised clustering problem and following the intuition
that local neighbors in feature space should have more similar predictions than
other features, we propose to optimize an objective of prediction consistency. This
objective encourages local neighborhood features in feature space to have similar
predictions while features farther away in feature space have dissimilar predictions, leading to efficient feature clustering and cluster assignment simultaneously. For efficient training, we seek to optimize an upper-bound of the objective resulting in two simple terms. Furthermore, we relate popular existing methods in domain adaptation, source-free domain adaptation and contrastive learning via the perspective of discriminability and diversity. The experimental results prove the superiority of our method, and our method can be adopted as a simple but strong baseline for future research in SFDA. Our method can be also adapted to source-free open-set and partial-set DA which further shows the generalization ability of our method.
 
  Address Virtual; November 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference NEURIPS  
  Notes (down) LAMP; 600.147 Approved no  
  Call Number Admin @ si @ YWW2022a Serial 3792  
Permanent link to this record
 

 
Author Francesco Pelosin; Saurav Jha; Andrea Torsello; Bogdan Raducanu; Joost Van de Weijer edit   pdf
url  doi
openurl 
  Title Towards exemplar-free continual learning in vision transformers: an account of attention, functional and weight regularization Type Conference Article
  Year 2022 Publication IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) Abbreviated Journal  
  Volume Issue Pages  
  Keywords Learning systems; Weight measurement; Image recognition; Surgery; Benchmark testing; Transformers; Stability analysis  
  Abstract In this paper, we investigate the continual learning of Vision Transformers (ViT) for the challenging exemplar-free scenario, with special focus on how to efficiently distill the knowledge of its crucial self-attention mechanism (SAM). Our work takes an initial step towards a surgical investigation of SAM for designing coherent continual learning methods in ViTs. We first carry out an evaluation of established continual learning regularization techniques. We then examine the effect of regularization when applied to two key enablers of SAM: (a) the contextualized embedding layers, for their ability to capture well-scaled representations with respect to the values, and (b) the prescaled attention maps, for carrying value-independent global contextual information. We depict the perks of each distilling strategy on two image recognition benchmarks (CIFAR100 and ImageNet-32) – while (a) leads to a better overall accuracy, (b) helps enhance the rigidity by maintaining competitive performances. Furthermore, we identify the limitation imposed by the symmetric nature of regularization losses. To alleviate this, we propose an asymmetric variant and apply it to the pooled output distillation (POD) loss adapted for ViTs. Our experiments confirm that introducing asymmetry to POD boosts its plasticity while retaining stability across (a) and (b). Moreover, we acknowledge low forgetting measures for all the compared methods, indicating that ViTs might be naturally inclined continual learners. 1  
  Address New Orleans; USA; June 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPRW  
  Notes (down) LAMP; 600.147 Approved no  
  Call Number Admin @ si @ PJT2022 Serial 3784  
Permanent link to this record
 

 
Author Yaxing Wang; Joost Van de Weijer; Lu Yu; Shangling Jui edit  openurl
  Title Distilling GANs with Style-Mixed Triplets for X2I Translation with Limited Data Type Conference Article
  Year 2022 Publication 10th International Conference on Learning Representations Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Conditional image synthesis is an integral part of many X2I translation systems, including image-to-image, text-to-image and audio-to-image translation systems. Training these large systems generally requires huge amounts of training data.
Therefore, we investigate knowledge distillation to transfer knowledge from a high-quality unconditioned generative model (e.g., StyleGAN) to a conditioned synthetic image generation modules in a variety of systems. To initialize the conditional and reference branch (from a unconditional GAN) we exploit the style mixing characteristics of high-quality GANs to generate an infinite supply of style-mixed triplets to perform the knowledge distillation. Extensive experimental results in a number of image generation tasks (i.e., image-to-image, semantic segmentation-to-image, text-to-image and audio-to-image) demonstrate qualitatively and quantitatively that our method successfully transfers knowledge to the synthetic image generation modules, resulting in more realistic images than previous methods as confirmed by a significant drop in the FID.
 
  Address Virtual  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICLR  
  Notes (down) LAMP; 600.147 Approved no  
  Call Number Admin @ si @ WWY2022 Serial 3791  
Permanent link to this record
 

 
Author Kai Wang; Fei Yang; Joost Van de Weijer edit   pdf
openurl 
  Title Attention Distillation: self-supervised vision transformer students need more guidance Type Conference Article
  Year 2022 Publication 33rd British Machine Vision Conference Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Self-supervised learning has been widely applied to train high-quality vision transformers. Unleashing their excellent performance on memory and compute constraint devices is therefore an important research topic. However, how to distill knowledge from one self-supervised ViT to another has not yet been explored. Moreover, the existing self-supervised knowledge distillation (SSKD) methods focus on ConvNet based architectures are suboptimal for ViT knowledge distillation. In this paper, we study knowledge distillation of self-supervised vision transformers (ViT-SSKD). We show that directly distilling information from the crucial attention mechanism from teacher to student can significantly narrow the performance gap between both. In experiments on ImageNet-Subset and ImageNet-1K, we show that our method AttnDistill outperforms existing self-supervised knowledge distillation (SSKD) methods and achieves state-of-the-art k-NN accuracy compared with self-supervised learning (SSL) methods learning from scratch (with the ViT-S model). We are also the first to apply the tiny ViT-T model on self-supervised learning. Moreover, AttnDistill is independent of self-supervised learning algorithms, it can be adapted to ViT based SSL methods to improve the performance in future research.  
  Address London; UK; November 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference BMVC  
  Notes (down) LAMP; 600.147 Approved no  
  Call Number Admin @ si @ WYW2022 Serial 3793  
Permanent link to this record
 

 
Author Kai Wang; Chenshen Wu; Andrew Bagdanov; Xialei Liu; Shiqi Yang; Shangling Jui; Joost Van de Weijer edit  openurl
  Title Positive Pair Distillation Considered Harmful: Continual Meta Metric Learning for Lifelong Object Re-Identification Type Conference Article
  Year 2022 Publication 33rd British Machine Vision Conference Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Lifelong object re-identification incrementally learns from a stream of re-identification tasks. The objective is to learn a representation that can be applied to all tasks and that generalizes to previously unseen re-identification tasks. The main challenge is that at inference time the representation must generalize to previously unseen identities. To address this problem, we apply continual meta metric learning to lifelong object re-identification. To prevent forgetting of previous tasks, we use knowledge distillation and explore the roles of positive and negative pairs. Based on our observation that the distillation and metric losses are antagonistic, we propose to remove positive pairs from distillation to robustify model updates. Our method, called Distillation without Positive Pairs (DwoPP), is evaluated on extensive intra-domain experiments on person and vehicle re-identification datasets, as well as inter-domain experiments on the LReID benchmark. Our experiments demonstrate that DwoPP significantly outperforms the state-of-the-art.  
  Address London; UK; November 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference BMVC  
  Notes (down) LAMP; 600.147 Approved no  
  Call Number Admin @ si @ WWB2022 Serial 3794  
Permanent link to this record
 

 
Author Shiqi Yang; Yaxing Wang; Kai Wang; Shangling Jui; Joost Van de Weijer edit   pdf
openurl 
  Title Local Prediction Aggregation: A Frustratingly Easy Source-free Domain Adaptation Method Type Miscellaneous
  Year 2022 Publication Arxiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract We propose a simple but effective source-free domain adaptation (SFDA) method. Treating SFDA as an unsupervised clustering problem and following the intuition that local neighbors in feature space should have more similar predictions than other features, we propose to optimize an objective of prediction consistency. This objective encourages local neighborhood features in feature space to have similar predictions while features farther away in feature space have dissimilar predictions, leading to efficient feature clustering and cluster assignment simultaneously. For efficient training, we seek to optimize an upper-bound of the objective resulting in two simple terms. Furthermore, we relate popular existing methods in domain adaptation, source-free domain adaptation and contrastive learning via the perspective of discriminability and diversity. The experimental results prove the superiority of our method, and our method can be adopted as a simple but strong baseline for future research in SFDA. Our method can be also adapted to source-free open-set and partial-set DA which further shows the generalization ability of our method. Code is available in this https URL.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (down) LAMP; 600.147 Approved no  
  Call Number Admin @ si @ YWW2022b Serial 3815  
Permanent link to this record
 

 
Author Lu Yu; Bartlomiej Twardowski; Xialei Liu; Luis Herranz; Kai Wang; Yongmai Cheng; Shangling Jui; Joost Van de Weijer edit   pdf
openurl 
  Title Semantic Drift Compensation for Class-Incremental Learning of Embeddings Type Conference Article
  Year 2020 Publication 33rd IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Class-incremental learning of deep networks sequentially increases the number of classes to be classified. During training, the network has only access to data of one task at a time, where each task contains several classes. In this setting, networks suffer from catastrophic forgetting which refers to the drastic drop in performance on previous tasks. The vast majority of methods have studied this scenario for classification networks, where for each new task the classification layer of the network must be augmented with additional weights to make room for the newly added classes. Embedding networks have the advantage that new classes can be naturally included into the network without adding new weights. Therefore, we study incremental learning for embedding networks. In addition, we propose a new method to estimate the drift, called semantic drift, of features and compensate for it without the need of any exemplars. We approximate the drift of previous tasks based on the drift that is experienced by current task data. We perform experiments on fine-grained datasets, CIFAR100 and ImageNet-Subset. We demonstrate that embedding networks suffer significantly less from catastrophic forgetting. We outperform existing methods which do not require exemplars and obtain competitive results compared to methods which store exemplars. Furthermore, we show that our proposed SDC when combined with existing methods to prevent forgetting consistently improves results.  
  Address Virtual CVPR  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPR  
  Notes (down) LAMP; 600.141; 601.309; 602.200; 600.120 Approved no  
  Call Number Admin @ si @ YTL2020 Serial 3422  
Permanent link to this record
 

 
Author Lichao Zhang; Abel Gonzalez-Garcia; Joost Van de Weijer; Martin Danelljan; Fahad Shahbaz Khan edit   pdf
doi  openurl
  Title Synthetic Data Generation for End-to-End Thermal Infrared Tracking Type Journal Article
  Year 2019 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP  
  Volume 28 Issue 4 Pages 1837 - 1850  
  Keywords  
  Abstract The usage of both off-the-shelf and end-to-end trained deep networks have significantly improved the performance of visual tracking on RGB videos. However, the lack of large labeled datasets hampers the usage of convolutional neural networks for tracking in thermal infrared (TIR) images. Therefore, most state-of-the-art methods on tracking for TIR data are still based on handcrafted features. To address this problem, we propose to use image-to-image translation models. These models allow us to translate the abundantly available labeled RGB data to synthetic TIR data. We explore both the usage of paired and unpaired image translation models for this purpose. These methods provide us with a large labeled dataset of synthetic TIR sequences, on which we can train end-to-end optimal features for tracking. To the best of our knowledge, we are the first to train end-to-end features for TIR tracking. We perform extensive experiments on the VOT-TIR2017 dataset. We show that a network trained on a large dataset of synthetic TIR data obtains better performance than one trained on the available real TIR data. Combining both data sources leads to further improvement. In addition, when we combine the network with motion features, we outperform the state of the art with a relative gain of over 10%, clearly showing the efficiency of using synthetic data to train end-to-end TIR trackers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (down) LAMP; 600.141; 600.120 Approved no  
  Call Number Admin @ si @ YGW2019 Serial 3228  
Permanent link to this record
 

 
Author Xinhang Song; Shuqiang Jiang; Luis Herranz; Chengpeng Chen edit   pdf
url  doi
openurl 
  Title Learning Effective RGB-D Representations for Scene Recognition Type Journal Article
  Year 2019 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP  
  Volume 28 Issue 2 Pages 980-993  
  Keywords  
  Abstract Deep convolutional networks can achieve impressive results on RGB scene recognition thanks to large data sets such as places. In contrast, RGB-D scene recognition is still underdeveloped in comparison, due to two limitations of RGB-D data we address in this paper. The first limitation is the lack of depth data for training deep learning models. Rather than fine tuning or transferring RGB-specific features, we address this limitation by proposing an architecture and a two-step training approach that directly learns effective depth-specific features using weak supervision via patches. The resulting RGB-D model also benefits from more complementary multimodal features. Another limitation is the short range of depth sensors (typically 0.5 m to 5.5 m), resulting in depth images not capturing distant objects in the scenes that RGB images can. We show that this limitation can be addressed by using RGB-D videos, where more comprehensive depth information is accumulated as the camera travels across the scenes. Focusing on this scenario, we introduce the ISIA RGB-D video data set to evaluate RGB-D scene recognition with videos. Our video recognition architecture combines convolutional and recurrent neural networks that are trained in three steps with increasingly complex data to learn effective features (i.e., patches, frames, and sequences). Our approach obtains the state-of-the-art performances on RGB-D image (NYUD2 and SUN RGB-D) and video (ISIA RGB-D) scene recognition.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (down) LAMP; 600.141; 600.120 Approved no  
  Call Number Admin @ si @ SJH2019 Serial 3247  
Permanent link to this record
 

 
Author W.Win; B.Bao; Q.Xu; Luis Herranz; Shuqiang Jiang edit  url
doi  openurl
  Title Editorial Note: Efficient Multimedia Processing Methods and Applications Type Miscellaneous
  Year 2019 Publication Multimedia Tools and Applications Abbreviated Journal MTAP  
  Volume 78 Issue 1 Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (down) LAMP; 600.141; 600.120 Approved no  
  Call Number Admin @ si @ WBX2019 Serial 3257  
Permanent link to this record
 

 
Author Lichao Zhang edit  isbn
openurl 
  Title Towards end-to-end Networks for Visual Tracking in RGB and TIR Videos Type Book Whole
  Year 2019 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract In the current work, we identify several problems of current tracking systems. The lack of large-scale labeled datasets hampers the usage of deep learning, especially end-to-end training, for tracking in TIR images. Therefore, many methods for tracking on TIR data are still based on hand-crafted features. This situation also happens in multi-modal tracking, e.g. RGB-T tracking. Another reason, which hampers the development of RGB-T tracking, is that there exists little research on the fusion mechanisms for combining information from RGB and TIR modalities. One of the crucial components of most trackers is the update module. For the currently existing end-to-end tracking architecture, e.g, Siamese trackers, the online model update is still not taken into consideration at the training stage. They use no-update or a linear update strategy during the inference stage. While such a hand-crafted approach to updating has led to improved results, its simplicity limits the potential gain likely to be obtained by learning to update.

To address the data-scarcity for TIR and RGB-T tracking, we use image-to-image translation to generate a large-scale synthetic TIR dataset. This dataset allows us to perform end-to-end training for TIR tracking. Furthermore, we investigate several fusion mechanisms for RGB-T tracking. The multi-modal trackers are also trained in an end-to-end manner on the synthetic data. To improve the standard online update, we pose the updating step as an optimization problem which can be solved by training a neural network. Our approach thereby reduces the hand-crafted components in the tracking pipeline and sets a further step in the direction of a complete end-to-end trained tracking network which also considers updating during optimization.
 
  Address November 2019  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Joost Van de Weijer;Abel Gonzalez;Fahad Shahbaz Khan  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-1210011-1-9 Medium  
  Area Expedition Conference  
  Notes (down) LAMP; 600.141; 600.120 Approved no  
  Call Number Admin @ si @ Zha2019 Serial 3393  
Permanent link to this record
 

 
Author Yaxing Wang edit  isbn
openurl 
  Title Transferring and Learning Representations for Image Generation and Translation Type Book Whole
  Year 2020 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Image generation is arguably one of the most attractive, compelling, and challenging tasks in computer vision. Among the methods which perform image generation, generative adversarial networks (GANs) play a key role. The most common image generation models based on GANs can be divided into two main approaches. The first one, called simply image generation takes random noise as an input and synthesizes an image which follows the same distribution as the images in the training set. The second class, which is called image-to-image translation, aims to map an image from a source domain to one that is indistinguishable from those in the target domain. Image-to-image translation methods can further be divided into paired and unpaired image-to-image translation based on whether they require paired data or not. In this thesis, we aim to address some challenges of both image generation and image-to-image generation.GANs highly rely upon having access to vast quantities of data, and fail to generate realistic images from random noise when applied to domains with few images. To address this problem, we aim to transfer knowledge from a model trained on a large dataset (source domain) to the one learned on limited data (target domain). We find that both GANs andconditional GANs can benefit from models trained on large datasets. Our experiments show that transferring the discriminator is more important than the generator. Using both the generator and discriminator results in the best performance. We found, however, that this method suffers from overfitting, since we update all parameters to adapt to the target data. We propose a novel architecture, which is tailored to address knowledge transfer to very small target domains. Our approach effectively exploreswhich part of the latent space is more related to the target domain. Additionally, the proposed method is able to transfer knowledge from multiple pretrained GANs. Although image-to-image translation has achieved outstanding performance, it still facesseveral problems. First, for translation between complex domains (such as translations between different modalities) image-to-image translation methods require paired data. We show that when only some of the pairwise translations have been seen (i.e. during training), we can infer the remaining unseen translations (where training pairs are not available). We propose a new approach where we align multiple encoders and decoders in such a way that the desired translation can be obtained by simply cascadingthe source encoder and the target decoder, even when they have not interacted during the training stage (i.e. unseen). Second, we address the issue of bias in image-to-image translation. Biased datasets unavoidably contain undesired changes, which are dueto the fact that the target dataset has a particular underlying visual distribution. We use carefully designed semantic constraints to reduce the effects of the bias. The semantic constraint aims to enforce the preservation of desired image properties. Finally, current approaches fail to generate diverse outputs or perform scalable image transfer in a single model. To alleviate this problem, we propose a scalable and diverse image-to-image translation. We employ random noise to control the diversity. The scalabitlity is determined by conditioning the domain label.computer vision, deep learning, imitation learning, adversarial generative networks, image generation, image-to-image translation.  
  Address January 2020  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Joost Van de Weijer;Abel Gonzalez;Luis Herranz  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-121011-5-7 Medium  
  Area Expedition Conference  
  Notes (down) LAMP; 600.141; 600.120 Approved no  
  Call Number Admin @ si @ Wan2020 Serial 3397  
Permanent link to this record
 

 
Author Xiangyang Li; Luis Herranz; Shuqiang Jiang edit   pdf
url  openurl
  Title Multifaceted Analysis of Fine-Tuning in Deep Model for Visual Recognition Type Journal
  Year 2020 Publication ACM Transactions on Data Science Abbreviated Journal ACM  
  Volume Issue Pages  
  Keywords  
  Abstract In recent years, convolutional neural networks (CNNs) have achieved impressive performance for various visual recognition scenarios. CNNs trained on large labeled datasets can not only obtain significant performance on most challenging benchmarks but also provide powerful representations, which can be used to a wide range of other tasks. However, the requirement of massive amounts of data to train deep neural networks is a major drawback of these models, as the data available is usually limited or imbalanced. Fine-tuning (FT) is an effective way to transfer knowledge learned in a source dataset to a target task. In this paper, we introduce and systematically investigate several factors that influence the performance of fine-tuning for visual recognition. These factors include parameters for the retraining procedure (e.g., the initial learning rate of fine-tuning), the distribution of the source and target data (e.g., the number of categories in the source dataset, the distance between the source and target datasets) and so on. We quantitatively and qualitatively analyze these factors, evaluate their influence, and present many empirical observations. The results reveal insights into what fine-tuning changes CNN parameters and provide useful and evidence-backed intuitions about how to implement fine-tuning for computer vision tasks.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (down) LAMP; 600.141; 600.120 Approved no  
  Call Number Admin @ si @ LHJ2020 Serial 3423  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: