|   | 
Details
   web
Records
Author Rafael E. Rivadeneira; Angel Sappa; Boris X. Vintimilla; Sabari Nathan; Priya Kansal; Armin Mehri; Parichehr Behjati Ardakani; A.Dalal; A.Akula; D.Sharma; S.Pandey; B.Kumar; J.Yao; R.Wu; KFeng; N.Li; Y.Zhao; H.Patel; V. Chudasama; K.Pjajapati; A.Sarvaiya; K.Upla; K.Raja; R.Ramachandra; C.Bush; F.Almasri; T.Vandamme; O.Debeir; N.Gutierrez; Q.Nguyen; W.Beksi
Title Thermal Image Super-Resolution Challenge – PBVS 2021 Type Conference Article
Year 2021 Publication Conference on Computer Vision and Pattern Recognition Workshops Abbreviated Journal
Volume Issue Pages 4359-4367
Keywords
Abstract This paper presents results from the second Thermal Image Super-Resolution (TISR) challenge organized in the framework of the Perception Beyond the Visible Spectrum (PBVS) 2021 workshop. For this second edition, the same thermal image dataset considered during the first challenge has been used; only mid-resolution (MR) and high-resolution (HR) sets have been considered. The dataset consists of 951 training images and 50 testing images for each resolution. A set of 20 images for each resolution is kept aside for evaluation. The two evaluation methodologies proposed for the first challenge are also considered in this opportunity. The first evaluation task consists of measuring the PSNR and SSIM between the obtained SR image and the corresponding ground truth (i.e., the HR thermal image downsampled by four). The second evaluation also consists of measuring the PSNR and SSIM, but in this case, considers the x2 SR obtained from the given MR thermal image; this evaluation is performed between the SR image with respect to the semi-registered HR image, which has been acquired with another camera. The results outperformed those from the first challenge, thus showing an improvement in both evaluation metrics.
Address Virtual; June 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPRW
Notes (down) MSIAU; 600.130; 600.122 Approved no
Call Number Admin @ si @ RSV2021 Serial 3581
Permanent link to this record
 

 
Author Armin Mehri; Parichehr Behjati Ardakani; Angel Sappa
Title MPRNet: Multi-Path Residual Network for Lightweight Image Super Resolution Type Conference Article
Year 2021 Publication IEEE Winter Conference on Applications of Computer Vision Abbreviated Journal
Volume Issue Pages 2703-2712
Keywords
Abstract Lightweight super resolution networks have extremely importance for real-world applications. In recent years several SR deep learning approaches with outstanding achievement have been introduced by sacrificing memory and computational cost. To overcome this problem, a novel lightweight super resolution network is proposed, which improves the SOTA performance in lightweight SR and performs roughly similar to computationally expensive networks. Multi-Path Residual Network designs with a set of Residual concatenation Blocks stacked with Adaptive Residual Blocks: ($i$) to adaptively extract informative features and learn more expressive spatial context information; ($ii$) to better leverage multi-level representations before up-sampling stage; and ($iii$) to allow an efficient information and gradient flow within the network. The proposed architecture also contains a new attention mechanism, Two-Fold Attention Module, to maximize the representation ability of the model. Extensive experiments show the superiority of our model against other SOTA SR approaches.
Address Virtual; January 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference WACV
Notes (down) MSIAU; 600.130; 600.122 Approved no
Call Number Admin @ si @ MAS2021b Serial 3582
Permanent link to this record
 

 
Author Armin Mehri; Parichehr Behjati Ardakani; Angel Sappa
Title LiNet: A Lightweight Network for Image Super Resolution Type Conference Article
Year 2021 Publication 25th International Conference on Pattern Recognition Abbreviated Journal
Volume Issue Pages 7196-7202
Keywords
Abstract This paper proposes a new lightweight network, LiNet, that enhancing technical efficiency in lightweight super resolution and operating approximately like very large and costly networks in terms of number of network parameters and operations. The proposed architecture allows the network to learn more abstract properties by avoiding low-level information via multiple links. LiNet introduces a Compact Dense Module, which contains set of inner and outer blocks, to efficiently extract meaningful information, to better leverage multi-level representations before upsampling stage, and to allow an efficient information and gradient flow within the network. Experiments on benchmark datasets show that the proposed LiNet achieves favorable performance against lightweight state-of-the-art methods.
Address Virtual; January 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (down) MSIAU; 600.130; 600.122 Approved no
Call Number Admin @ si @ MAS2021a Serial 3583
Permanent link to this record
 

 
Author Mohamed Ramzy Ibrahim; Robert Benavente; Felipe Lumbreras; Daniel Ponsa
Title 3DRRDB: Super Resolution of Multiple Remote Sensing Images using 3D Residual in Residual Dense Blocks Type Conference Article
Year 2022 Publication CVPR 2022 Workshop on IEEE Perception Beyond the Visible Spectrum workshop series (PBVS, 18th Edition) Abbreviated Journal
Volume Issue Pages
Keywords Training; Solid modeling; Three-dimensional displays; PSNR; Convolution; Superresolution; Pattern recognition
Abstract The rapid advancement of Deep Convolutional Neural Networks helped in solving many remote sensing problems, especially the problems of super-resolution. However, most state-of-the-art methods focus more on Single Image Super-Resolution neglecting Multi-Image Super-Resolution. In this work, a new proposed 3D Residual in Residual Dense Blocks model (3DRRDB) focuses on remote sensing Multi-Image Super-Resolution for two different single spectral bands. The proposed 3DRRDB model explores the idea of 3D convolution layers in deeply connected Dense Blocks and the effect of local and global residual connections with residual scaling in Multi-Image Super-Resolution. The model tested on the Proba-V challenge dataset shows a significant improvement above the current state-of-the-art models scoring a Corrected Peak Signal to Noise Ratio (cPSNR) of 48.79 dB and 50.83 dB for Near Infrared (NIR) and RED Bands respectively. Moreover, the proposed 3DRRDB model scores a Corrected Structural Similarity Index Measure (cSSIM) of 0.9865 and 0.9909 for NIR and RED bands respectively.
Address New Orleans, USA; 19 June 2022
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPRW
Notes (down) MSIAU; 600.130 Approved no
Call Number Admin @ si @ IBL2022 Serial 3693
Permanent link to this record
 

 
Author Rafael E. Rivadeneira; Angel Sappa; Boris X. Vintimilla
Title Thermal Image Super-Resolution: A Novel Unsupervised Approach Type Conference Article
Year 2022 Publication International Joint Conference on Computer Vision, Imaging and Computer Graphics Abbreviated Journal
Volume 1474 Issue Pages 495–506
Keywords
Abstract This paper proposes the use of a CycleGAN architecture for thermal image super-resolution under a transfer domain strategy, where middle-resolution images from one camera are transferred to a higher resolution domain of another camera. The proposed approach is trained with a large dataset acquired using three thermal cameras at different resolutions. An unsupervised learning process is followed to train the architecture. Additional loss function is proposed trying to improve results from the state of the art approaches. Following the first thermal image super-resolution challenge (PBVS-CVPR2020) evaluations are performed. A comparison with previous works is presented showing the proposed approach reaches the best results.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference VISIGRAPP
Notes (down) MSIAU; 600.130 Approved no
Call Number Admin @ si @ RSV2022d Serial 3776
Permanent link to this record
 

 
Author Edgar Riba; D. Mishkin; Daniel Ponsa; E. Rublee; G. Bradski
Title Kornia: an Open Source Differentiable Computer Vision Library for PyTorch Type Conference Article
Year 2020 Publication IEEE Winter Conference on Applications of Computer Vision Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address Aspen; Colorado; USA; March 2020
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference WACV
Notes (down) MSIAU; 600.122; 600.130 Approved no
Call Number Admin @ si @ RMP2020 Serial 3291
Permanent link to this record
 

 
Author Cristhian A. Aguilera-Carrasco; C. Aguilera; Angel Sappa
Title Melamine Faced Panels Defect Classification beyond the Visible Spectrum Type Journal Article
Year 2018 Publication Sensors Abbreviated Journal SENS
Volume 18 Issue 11 Pages 1-10
Keywords industrial application; infrared; machine learning
Abstract In this work, we explore the use of images from different spectral bands to classify defects in melamine faced panels, which could appear through the production process. Through experimental evaluation, we evaluate the use of images from the visible (VS), near-infrared (NIR), and long wavelength infrared (LWIR), to classify the defects using a feature descriptor learning approach together with a support vector machine classifier. Two descriptors were evaluated, Extended Local Binary Patterns (E-LBP) and SURF using a Bag of Words (BoW) representation. The evaluation was carried on with an image set obtained during this work, which contained five different defect categories that currently occurs in the industry. Results show that using images from beyond the visual spectrum helps to improve classification performance in contrast with a single visible spectrum solution.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (down) MSIAU; 600.122 Approved no
Call Number Admin @ si @ AAS2018 Serial 3191
Permanent link to this record
 

 
Author Xavier Soria; Angel Sappa
Title Improving Edge Detection in RGB Images by Adding NIR Channel Type Conference Article
Year 2018 Publication 14th IEEE International Conference on Signal Image Technology & Internet Based System Abbreviated Journal
Volume Issue Pages
Keywords Edge detection; Contour detection; VGG; CNN; RGB-NIR; Near infrared images
Abstract The edge detection is yet a critical problem in many computer vision and image processing tasks. The manuscript presents an Holistically-Nested Edge Detection based approach to study the inclusion of Near-Infrared in the Visible spectrum
images. To do so, a Single Sensor based dataset has been acquired in the range of 400nm to 1100nm wavelength spectral band. Prominent results have been obtained even when the ground truth (annotated edge-map) is based in the visible wavelength spectrum.
Address Las Palmas de Gran Canaria; November 2018
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference SITIS
Notes (down) MSIAU; 600.122 Approved no
Call Number Admin @ si @ SoS2018 Serial 3192
Permanent link to this record
 

 
Author Axel Barroso-Laguna; Edgar Riba; Daniel Ponsa; Krystian Mikolajczyk
Title Key.Net: Keypoint Detection by Handcrafted and Learned CNN Filters Type Conference Article
Year 2019 Publication 18th IEEE International Conference on Computer Vision Abbreviated Journal
Volume Issue Pages 5835-5843
Keywords
Abstract We introduce a novel approach for keypoint detection task that combines handcrafted and learned CNN filters within a shallow multi-scale architecture. Handcrafted filters provide anchor structures for learned filters, which localize, score and rank repeatable features. Scale-space representation is used within the network to extract keypoints at different levels. We design a loss function to detect robust features that exist across a range of scales and to maximize the repeatability score. Our Key.Net model is trained on data synthetically created from ImageNet and evaluated on HPatches benchmark. Results show that our approach outperforms state-of-the-art detectors in terms of repeatability, matching performance and complexity.
Address Seul; Corea; October 2019
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICCV
Notes (down) MSIAU; 600.122 Approved no
Call Number Admin @ si @ BRP2019 Serial 3290
Permanent link to this record
 

 
Author Xavier Soria
Title Single sensor multi-spectral imaging Type Book Whole
Year 2019 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal
Volume Issue Pages
Keywords
Abstract The image sensor, nowadays, is rolling the smartphone industry. While some phone brands explore equipping more image sensors, others, like Google, maintain their smartphones with just one sensor; but this sensor is equipped with Deep Learning to enhance the image quality. However, what all brands agree on is the need to research new image sensors; for instance, in 2015 Omnivision and PixelTeq presented new CMOS based image sensors defined as multispectral Single Sensor Camera (SSC), which are capable of capturing multispectral bands. This dissertation presents the benefits of using a multispectral SSCs that, as aforementioned, simultaneously acquires images in the visible and near-infrared (NIR) bands. The principal benefits while addressing problems related to image bands in the spectral range of 400 to 1100 nanometers, there are cost reductions in the hardware and software setup because only one SSC is needed instead of two, and the images alignment are not required any more. Concerning to the NIR spectrum, many works in literature have proven the benefits of working with NIR to enhance RGB images (e.g., image enhancement, remove shadows, dehazing, etc.). In spite of the advantage of using SSC (e.g., low latency), there are some drawback to be solved. One of this drawback corresponds to the nature of the silicon-based sensor, which in addition to capture the RGB image, when the infrared cut off filter is not installed it also acquires NIR information into the visible image. This phenomenon is called RGB and NIR crosstalking. This thesis firstly faces this problem in challenging images and then it shows the benefit of using multispectral images in the edge detection task.
The RGB color restoration from RGBN image is the topic tackled in RGB and NIR crosstalking. Even though in the literature a set of processes have been proposed to face this issue, in this thesis novel approaches, based on DL, are proposed to subtract the additional NIR included in the RGB channel. More precisely, an Artificial Neural Network (NN) and two Convolutional Neural Network (CNN) models are proposed. As the DL based models need a dataset with a large collection of image pairs, a large dataset is collected to address the color restoration. The collected images are from challenging scenes where the sunlight radiation is sufficient to give absorption/reflectance properties to the considered scenes. An extensive evaluation has been conducted on the CNN models, differences from most of the restored images are almost imperceptible to the human eye. The next proposal of the thesis is the validation of the usage of SSC images in the edge detection task. Three methods based on CNN have been proposed. While the first one is based on the most used model, holistically-nested edge detection (HED) termed as multispectral HED (MS-HED), the other two have been proposed observing the drawbacks of MS-HED. These two novel architectures have been designed from scratch (training from scratch); after the first architecture is validated in the visible domain a slight redesign is proposed to tackle the multispectral domain. Again, another dataset is collected to face this problem with SSCs. Even though edge detection is confronted in the multispectral domain, its qualitative and quantitative evaluation demonstrates the generalization in other datasets used for edge detection, improving state-of-the-art results.
Address September 2019
Corporate Author Thesis Ph.D. thesis
Publisher Ediciones Graficas Rey Place of Publication Editor Angel Sappa
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-948531-9-7 Medium
Area Expedition Conference
Notes (down) MSIAU; 600.122 Approved no
Call Number Admin @ si @ Sor2019 Serial 3391
Permanent link to this record
 

 
Author Cristhian A. Aguilera-Carrasco; Cristhian Aguilera; Cristobal A. Navarro; Angel Sappa
Title Fast CNN Stereo Depth Estimation through Embedded GPU Devices Type Journal Article
Year 2020 Publication Sensors Abbreviated Journal SENS
Volume 20 Issue 11 Pages 3249
Keywords stereo matching; deep learning; embedded GPU
Abstract Current CNN-based stereo depth estimation models can barely run under real-time constraints on embedded graphic processing unit (GPU) devices. Moreover, state-of-the-art evaluations usually do not consider model optimization techniques, being that it is unknown what is the current potential on embedded GPU devices. In this work, we evaluate two state-of-the-art models on three different embedded GPU devices, with and without optimization methods, presenting performance results that illustrate the actual capabilities of embedded GPU devices for stereo depth estimation. More importantly, based on our evaluation, we propose the use of a U-Net like architecture for postprocessing the cost-volume, instead of a typical sequence of 3D convolutions, drastically augmenting the runtime speed of current models. In our experiments, we achieve real-time inference speed, in the range of 5–32 ms, for 1216 × 368 input stereo images on the Jetson TX2, Jetson Xavier, and Jetson Nano embedded devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (down) MSIAU; 600.122 Approved no
Call Number Admin @ si @ AAN2020 Serial 3428
Permanent link to this record
 

 
Author Patricia Suarez; Angel Sappa; Boris X. Vintimilla
Title Deep learning-based vegetation index estimation Type Book Chapter
Year 2021 Publication Generative Adversarial Networks for Image-to-Image Translation Abbreviated Journal
Volume Issue Pages 205-234
Keywords
Abstract Chapter 9
Address
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor A.Solanki; A.Nayyar; M.Naved
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (down) MSIAU; 600.122 Approved no
Call Number Admin @ si @ SSV2021a Serial 3578
Permanent link to this record
 

 
Author Patricia Suarez; Angel Sappa; Boris X. Vintimilla
Title Cross-spectral image dehaze through a dense stacked conditional GAN based approach Type Conference Article
Year 2018 Publication 14th IEEE International Conference on Signal Image Technology & Internet Based System Abbreviated Journal
Volume Issue Pages
Keywords Infrared imaging; Dense; Stacked CGAN; Crossspectral; Convolutional networks
Abstract This paper proposes a novel approach to remove haze from RGB images using a near infrared images based on a dense stacked conditional Generative Adversarial Network (CGAN). The architecture of the deep network implemented
receives, besides the images with haze, its corresponding image in the near infrared spectrum, which serve to accelerate the learning process of the details of the characteristics of the images. The model uses a triplet layer that allows the independence learning of each channel of the visible spectrum image to remove the haze on each color channel separately. A multiple loss function scheme is proposed, which ensures balanced learning between the colors
and the structure of the images. Experimental results have shown that the proposed method effectively removes the haze from the images. Additionally, the proposed approach is compared with a state of the art approach showing better results.
Address Las Palmas de Gran Canaria; November 2018
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-1-5386-9385-8 Medium
Area Expedition Conference SITIS
Notes (down) MSIAU; 600.086; 600.130; 600.122 Approved no
Call Number Admin @ si @ SSV2018a Serial 3193
Permanent link to this record
 

 
Author Jorge Charco; Boris X. Vintimilla; Angel Sappa
Title Deep learning based camera pose estimation in multi-view environment Type Conference Article
Year 2018 Publication 14th IEEE International Conference on Signal Image Technology & Internet Based System Abbreviated Journal
Volume Issue Pages
Keywords Deep learning; Camera pose estimation; Multiview environment; Siamese architecture
Abstract This paper proposes to use a deep learning network architecture for relative camera pose estimation on a multi-view environment. The proposed network is a variant architecture of AlexNet to use as regressor for prediction the relative translation and rotation as output. The proposed approach is trained from
scratch on a large data set that takes as input a pair of imagesfrom the same scene. This new architecture is compared with a previous approach using standard metrics, obtaining better results on the relative camera pose.
Address Las Palmas de Gran Canaria; November 2018
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference SITIS
Notes (down) MSIAU; 600.086; 600.130; 600.122 Approved no
Call Number Admin @ si @ CVS2018 Serial 3194
Permanent link to this record
 

 
Author Patricia Suarez; Angel Sappa; Boris X. Vintimilla; Riad I. Hammoud
Title Near InfraRed Imagery Colorization Type Conference Article
Year 2018 Publication 25th International Conference on Image Processing Abbreviated Journal
Volume Issue Pages 2237 - 2241
Keywords Convolutional Neural Networks (CNN), Generative Adversarial Network (GAN), Infrared Imagery colorization
Abstract This paper proposes a stacked conditional Generative Adversarial Network-based method for Near InfraRed (NIR) imagery colorization. We propose a variant architecture of Generative Adversarial Network (GAN) that uses multiple
loss functions over a conditional probabilistic generative model. We show that this new architecture/loss-function yields better generalization and representation of the generated colored IR images. The proposed approach is evaluated on a large test dataset and compared to recent state of the art methods using standard metrics.
Address Athens; Greece; October 2018
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICIP
Notes (down) MSIAU; 600.086; 600.130; 600.122 Approved no
Call Number Admin @ si @ SSV2018b Serial 3195
Permanent link to this record