|   | 
Details
   web
Records
Author Debora Gil; Guillermo Torres
Title A multi-shape loss function with adaptive class balancing for the segmentation of lung structures Type Conference Article
Year 2020 Publication 34th International Congress and Exhibition on Computer Assisted Radiology & Surgery Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address Virtual; June 2020
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CARS
Notes (down) IAM; 600.139; 600.145 Approved no
Call Number Admin @ si @ GiT2020 Serial 3472
Permanent link to this record
 

 
Author Guillermo Torres; Sonia Baeza; Carles Sanchez; Ignasi Guasch; Antoni Rosell; Debora Gil
Title An Intelligent Radiomic Approach for Lung Cancer Screening Type Journal Article
Year 2022 Publication Applied Sciences Abbreviated Journal APPLSCI
Volume 12 Issue 3 Pages 1568
Keywords Lung cancer; Early diagnosis; Screening; Neural networks; Image embedding; Architecture optimization
Abstract The efficiency of lung cancer screening for reducing mortality is hindered by the high rate of false positives. Artificial intelligence applied to radiomics could help to early discard benign cases from the analysis of CT scans. The available amount of data and the fact that benign cases are a minority, constitutes a main challenge for the successful use of state of the art methods (like deep learning), which can be biased, over-fitted and lack of clinical reproducibility. We present an hybrid approach combining the potential of radiomic features to characterize nodules in CT scans and the generalization of the feed forward networks. In order to obtain maximal reproducibility with minimal training data, we propose an embedding of nodules based on the statistical significance of radiomic features for malignancy detection. This representation space of lesions is the input to a feed
forward network, which architecture and hyperparameters are optimized using own-defined metrics of the diagnostic power of the whole system. Results of the best model on an independent set of patients achieve 100% of sensitivity and 83% of specificity (AUC = 0.94) for malignancy detection.
Address Jan 2022
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (down) IAM; 600.139; 600.145 Approved no
Call Number Admin @ si @ TBS2022 Serial 3699
Permanent link to this record
 

 
Author Debora Gil; Aura Hernandez-Sabate; Julien Enconniere; Saryani Asmayawati; Pau Folch; Juan Borrego-Carazo; Miquel Angel Piera
Title E-Pilots: A System to Predict Hard Landing During the Approach Phase of Commercial Flights Type Journal Article
Year 2022 Publication IEEE Access Abbreviated Journal ACCESS
Volume 10 Issue Pages 7489-7503
Keywords
Abstract More than half of all commercial aircraft operation accidents could have been prevented by executing a go-around. Making timely decision to execute a go-around manoeuvre can potentially reduce overall aviation industry accident rate. In this paper, we describe a cockpit-deployable machine learning system to support flight crew go-around decision-making based on the prediction of a hard landing event.
This work presents a hybrid approach for hard landing prediction that uses features modelling temporal dependencies of aircraft variables as inputs to a neural network. Based on a large dataset of 58177 commercial flights, the results show that our approach has 85% of average sensitivity with 74% of average specificity at the go-around point. It follows that our approach is a cockpit-deployable recommendation system that outperforms existing approaches.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (down) IAM; 600.139; 600.118; 600.145 Approved no
Call Number Admin @ si @ GHE2022 Serial 3721
Permanent link to this record
 

 
Author Jose Elias Yauri; Aura Hernandez-Sabate; Pau Folch; Debora Gil
Title Mental Workload Detection Based on EEG Analysis Type Conference Article
Year 2021 Publication Artificial Intelligent Research and Development. Proceedings 23rd International Conference of the Catalan Association for Artificial Intelligence. Abbreviated Journal
Volume 339 Issue Pages 268-277
Keywords Cognitive states; Mental workload; EEG analysis; Neural Networks.
Abstract The study of mental workload becomes essential for human work efficiency, health conditions and to avoid accidents, since workload compromises both performance and awareness. Although workload has been widely studied using several physiological measures, minimising the sensor network as much as possible remains both a challenge and a requirement.
Electroencephalogram (EEG) signals have shown a high correlation to specific cognitive and mental states like workload. However, there is not enough evidence in the literature to validate how well models generalize in case of new subjects performing tasks of a workload similar to the ones included during model’s training.
In this paper we propose a binary neural network to classify EEG features across different mental workloads. Two workloads, low and medium, are induced using two variants of the N-Back Test. The proposed model was validated in a dataset collected from 16 subjects and shown a high level of generalization capability: model reported an average recall of 81.81% in a leave-one-out subject evaluation.
Address Virtual; October 20-22 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CCIA
Notes (down) IAM; 600.139; 600.118; 600.145 Approved no
Call Number Admin @ si @ Serial 3723
Permanent link to this record
 

 
Author Debora Gil; Ruth Aris; Agnes Borras; Esmitt Ramirez; Rafael Sebastian; Mariano Vazquez
Title Influence of fiber connectivity in simulations of cardiac biomechanics Type Journal Article
Year 2019 Publication International Journal of Computer Assisted Radiology and Surgery Abbreviated Journal IJCAR
Volume 14 Issue 1 Pages 63–72
Keywords Cardiac electromechanical simulations; Diffusion tensor imaging; Fiber connectivity
Abstract PURPOSE:
Personalized computational simulations of the heart could open up new improved approaches to diagnosis and surgery assistance systems. While it is fully recognized that myocardial fiber orientation is central for the construction of realistic computational models of cardiac electromechanics, the role of its overall architecture and connectivity remains unclear. Morphological studies show that the distribution of cardiac muscular fibers at the basal ring connects epicardium and endocardium. However, computational models simplify their distribution and disregard the basal loop. This work explores the influence in computational simulations of fiber distribution at different short-axis cuts.

METHODS:
We have used a highly parallelized computational solver to test different fiber models of ventricular muscular connectivity. We have considered two rule-based mathematical models and an own-designed method preserving basal connectivity as observed in experimental data. Simulated cardiac functional scores (rotation, torsion and longitudinal shortening) were compared to experimental healthy ranges using generalized models (rotation) and Mahalanobis distances (shortening, torsion).

RESULTS:
The probability of rotation was significantly lower for ruled-based models [95% CI (0.13, 0.20)] in comparison with experimental data [95% CI (0.23, 0.31)]. The Mahalanobis distance for experimental data was in the edge of the region enclosing 99% of the healthy population.

CONCLUSIONS:
Cardiac electromechanical simulations of the heart with fibers extracted from experimental data produce functional scores closer to healthy ranges than rule-based models disregarding architecture connectivity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (down) IAM; 600.096; 601.323; 600.139; 600.145 Approved no
Call Number Admin @ si @ GAB2019a Serial 3133
Permanent link to this record
 

 
Author Mireia Sole; Joan Blanco; Debora Gil; Oliver Valero; G. Fonseka; M. Lawrie; Francesca Vidal; Zaida Sarrate
Title Chromosome Territories in Mice Spermatogenesis: A new three-dimensional methodology of study Type Conference Article
Year 2017 Publication 11th European CytoGenesis Conference Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address Florencia; Italia; July 2017
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ECA
Notes (down) IAM; 600.096; 600.145 Approved no
Call Number Admin @ si @ SBG2017a Serial 2936
Permanent link to this record
 

 
Author Mireia Sole; Joan Blanco; Debora Gil; G. Fonseka; Richard Frodsham; Oliver Valero; Francesca Vidal; Zaida Sarrate
Title Is there a pattern of Chromosome territoriality along mice spermatogenesis? Type Conference Article
Year 2017 Publication 3rd Spanish MeioNet Meeting Abstract Book Abbreviated Journal
Volume Issue Pages 55-56
Keywords
Abstract
Address Miraflores de la Sierra; Madrid; June 2017
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference MEIONET
Notes (down) IAM; 600.096; 600.145 Approved no
Call Number Admin @ si @ Serial 2958
Permanent link to this record
 

 
Author Mireia Sole; Joan Blanco; Debora Gil; G. Fonseka; Richard Frodsham; Francesca Vidal; Zaida Sarrate
Title Noves perspectives en l estudi de la territorialitat cromosomica de cel·lules germinals masculines: estudis tridimensionals Type Journal
Year 2017 Publication Biologia de la Reproduccio Abbreviated Journal JBR
Volume 15 Issue Pages 73-78
Keywords
Abstract In somatic cells, chromosomes occupy specific nuclear regions called chromosome territories which are involved in the
maintenance and regulation of the genome. Preliminary data in male germ cells also suggest the importance of chromosome
territoriality in cell functionality. Nevertheless, the specific characteristics of testicular tissue (presence of different
cell types with different morphological characteristics, in different stages of development and with different ploidy)
makes difficult to achieve conclusive results. In this study we have developed a methodology to approach the threedimensional
study of all chromosome territories in male germ cells from C57BL/6J mice (Mus musculus). The method
includes the following steps: i) Optimized cell fixation to obtain an optimal preservation of the three-dimensionality cell
morphology, ii) Chromosome identification by FISH (Chromoprobe Multiprobe® OctoChrome™ Murine System; Cytocell)
and confocal microscopy (TCS-SP5, Leica Microsystems), iii) Cell type identification by immunofluorescence
iv) Image analysis using Matlab scripts, v) Numerical data extraction related to chromosome features, chromosome
radial position and chromosome relative position. This methodology allows the unequivocally identification and the
analysis of the chromosome territories of all spermatogenic stages. Results will provide information about the features
that determine chromosomal position, preferred associations between chromosomes, and the relationship between chromosome
positioning and genome regulation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-84-697-3767-5 Medium
Area Expedition Conference
Notes (down) IAM; 600.096; 600.145 Approved no
Call Number Admin @ si @ SBG2017c Serial 2961
Permanent link to this record
 

 
Author Mireia Sole; Joan Blanco; Debora Gil; G. Fonseka; Richard Frodsham; Oliver Valero; Francesca Vidal; Zaida Sarrate
Title Análisis 3d de la territorialidad cromosómica en células espermatogénicas: explorando la infertilidad desde un nuevo prisma Type Journal
Year 2017 Publication Revista Asociación para el Estudio de la Biología de la Reproducción Abbreviated Journal ASEBIR
Volume 22 Issue 2 Pages 105
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (down) IAM; 600.096; 600.145 Approved no
Call Number Admin @ si @ SBG2017d Serial 3042
Permanent link to this record
 

 
Author Esmitt Ramirez; Carles Sanchez; Agnes Borras; Marta Diez-Ferrer; Antoni Rosell; Debora Gil
Title BronchoX: bronchoscopy exploration software for biopsy intervention planning Type Journal
Year 2018 Publication Healthcare Technology Letters Abbreviated Journal HTL
Volume 5 Issue 5 Pages 177–182
Keywords
Abstract Virtual bronchoscopy (VB) is a non-invasive exploration tool for intervention planning and navigation of possible pulmonary lesions (PLs). A VB software involves the location of a PL and the calculation of a route, starting from the trachea, to reach it. The selection of a VB software might be a complex process, and there is no consensus in the community of medical software developers in which is the best-suited system to use or framework to choose. The authors present Bronchoscopy Exploration (BronchoX), a VB software to plan biopsy interventions that generate physician-readable instructions to reach the PLs. The authors’ solution is open source, multiplatform, and extensible for future functionalities, designed by their multidisciplinary research and development group. BronchoX is a compound of different algorithms for segmentation, visualisation, and navigation of the respiratory tract. Performed results are a focus on the test the effectiveness of their proposal as an exploration software, also to measure its accuracy as a guiding system to reach PLs. Then, 40 different virtual planning paths were created to guide physicians until distal bronchioles. These results provide a functional software for BronchoX and demonstrate how following simple instructions is possible to reach distal lesions from the trachea.
Address
Corporate Author rank (SJR) Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (down) IAM; 600.096; 600.075; 601.323; 601.337; 600.145 Approved no
Call Number Admin @ si @ RSB2018a Serial 3132
Permanent link to this record
 

 
Author Esmitt Ramirez; Carles Sanchez; Agnes Borras; Marta Diez-Ferrer; Antoni Rosell; Debora Gil
Title Image-Based Bronchial Anatomy Codification for Biopsy Guiding in Video Bronchoscopy Type Conference Article
Year 2018 Publication OR 2.0 Context-Aware Operating Theaters, Computer Assisted Robotic Endoscopy, Clinical Image-Based Procedures, and Skin Image Analysis Abbreviated Journal
Volume 11041 Issue Pages
Keywords Biopsy guiding; Bronchoscopy; Lung biopsy; Intervention guiding; Airway codification
Abstract Bronchoscopy examinations allow biopsy of pulmonary nodules with minimum risk for the patient. Even for experienced bronchoscopists, it is difficult to guide the bronchoscope to most distal lesions and obtain an accurate diagnosis. This paper presents an image-based codification of the bronchial anatomy for bronchoscopy biopsy guiding. The 3D anatomy of each patient is codified as a binary tree with nodes representing bronchial levels and edges labeled using their position on images projecting the 3D anatomy from a set of branching points. The paths from the root to leaves provide a codification of navigation routes with spatially consistent labels according to the anatomy observes in video bronchoscopy explorations. We evaluate our labeling approach as a guiding system in terms of the number of bronchial levels correctly codified, also in the number of labels-based instructions correctly supplied, using generalized mixed models and computer-generated data. Results obtained for three independent observers prove the consistency and reproducibility of our guiding system. We trust that our codification based on viewer’s projection might be used as a foundation for the navigation process in Virtual Bronchoscopy systems.
Address Granada; September 2018
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference MICCAIW
Notes (down) IAM; 600.096; 600.075; 601.323; 600.145 Approved no
Call Number Admin @ si @ RSB2018b Serial 3137
Permanent link to this record
 

 
Author Marta Diez-Ferrer; Debora Gil; Elena Carreño; Susana Padrones; Samantha Aso
Title Positive Airway Pressure-Enhanced CT to Improve Virtual Bronchoscopic Navigation Type Journal Article
Year 2017 Publication Journal of Thoracic Oncology Abbreviated Journal JTO
Volume 12 Issue 1S Pages S596-S597
Keywords Thorax CT; diagnosis; Peripheral Pulmonary Nodule
Abstract A main weakness of virtual bronchoscopic navigation (VBN) is unsuccessful segmentation of distal branches approaching peripheral pulmonary nodules (PPN). CT scan acquisition protocol is pivotal for segmentation covering the utmost periphery. We hypothesize that application of continuous positive airway pressure (CPAP) during CT acquisition could improve visualization and segmentation of peripheral bronchi. The purpose of the present pilot study is to compare quality of segmentations under 4 CT acquisition modes: inspiration (INSP), expiration (EXP) and both with CPAP (INSP-CPAP and EXP-CPAP).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (down) IAM; 600.096; 600.075; 600.145 Approved no
Call Number Admin @ si @ DGC2017a Serial 2883
Permanent link to this record
 

 
Author H. Martin Kjer; Jens Fagertun; Sergio Vera; Debora Gil
Title Medial structure generation for registration of anatomical structures Type Book Chapter
Year 2017 Publication Skeletonization, Theory, Methods and Applications Abbreviated Journal
Volume 11 Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (down) IAM; 600.096; 600.075; 600.145 Approved no
Call Number Admin @ si @ MFV2017a Serial 2935
Permanent link to this record
 

 
Author Carles Sanchez; Antonio Esteban Lansaque; Agnes Borras; Marta Diez-Ferrer; Antoni Rosell; Debora Gil
Title Towards a Videobronchoscopy Localization System from Airway Centre Tracking Type Conference Article
Year 2017 Publication 12th International Conference on Computer Vision Theory and Applications Abbreviated Journal
Volume Issue Pages 352-359
Keywords Video-bronchoscopy; Lung cancer diagnosis; Airway lumen detection; Region tracking; Guided bronchoscopy navigation
Abstract Bronchoscopists use fluoroscopy to guide flexible bronchoscopy to the lesion to be biopsied without any kind of incision. Being fluoroscopy an imaging technique based on X-rays, the risk of developmental problems and cancer is increased in those subjects exposed to its application, so minimizing radiation is crucial. Alternative guiding systems such as electromagnetic navigation require specific equipment, increase the cost of the clinical procedure and still require fluoroscopy. In this paper we propose an image based guiding system based on the extraction of airway centres from intra-operative videos. Such anatomical landmarks are matched to the airway centreline extracted from a pre-planned CT to indicate the best path to the nodule. We present a
feasibility study of our navigation system using simulated bronchoscopic videos and a multi-expert validation of landmarks extraction in 3 intra-operative ultrathin explorations.
Address Porto; Portugal; February 2017
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference VISAPP
Notes (down) IAM; 600.096; 600.075; 600.145 Approved no
Call Number Admin @ si @ SEB2017 Serial 2943
Permanent link to this record
 

 
Author Debora Gil; Oriol Ramos Terrades; Elisa Minchole; Carles Sanchez; Noelia Cubero de Frutos; Marta Diez-Ferrer; Rosa Maria Ortiz; Antoni Rosell
Title Classification of Confocal Endomicroscopy Patterns for Diagnosis of Lung Cancer Type Conference Article
Year 2017 Publication 6th Workshop on Clinical Image-based Procedures: Translational Research in Medical Imaging Abbreviated Journal
Volume 10550 Issue Pages 151-159
Keywords
Abstract Confocal Laser Endomicroscopy (CLE) is an emerging imaging technique that allows the in-vivo acquisition of cell patterns of potentially malignant lesions. Such patterns could discriminate between inflammatory and neoplastic lesions and, thus, serve as a first in-vivo biopsy to discard cases that do not actually require a cell biopsy.

The goal of this work is to explore whether CLE images obtained during videobronchoscopy contain enough visual information to discriminate between benign and malign peripheral lesions for lung cancer diagnosis. To do so, we have performed a pilot comparative study with 12 patients (6 adenocarcinoma and 6 benign-inflammatory) using 2 different methods for CLE pattern analysis: visual analysis by 3 experts and a novel methodology that uses graph methods to find patterns in pre-trained feature spaces. Our preliminary results indicate that although visual analysis can only achieve a 60.2% of accuracy, the accuracy of the proposed unsupervised image pattern classification raises to 84.6%.

We conclude that CLE images visual information allow in-vivo detection of neoplastic lesions and graph structural analysis applied to deep-learning feature spaces can achieve competitive results.
Address Quebec; Canada; September 2017
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CLIP
Notes (down) IAM; 600.096; 600.075; 600.145 Approved no
Call Number Admin @ si @ GRM2017 Serial 2957
Permanent link to this record