toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Patricia Suarez; Dario Carpio; Angel Sappa edit  url
doi  openurl
  Title Boosting Guided Super-Resolution Performance with Synthesized Images Type Conference Article
  Year 2023 Publication 17th International Conference on Signal-Image Technology & Internet-Based Systems Abbreviated Journal  
  Volume Issue Pages 189-195  
  Keywords  
  Abstract Guided image processing techniques are widely used for extracting information from a guiding image to aid in the processing of the guided one. These images may be sourced from different modalities, such as 2D and 3D, or different spectral bands, like visible and infrared. In the case of guided cross-spectral super-resolution, features from the two modal images are extracted and efficiently merged to migrate guidance information from one image, usually high-resolution (HR), toward the guided one, usually low-resolution (LR). Different approaches have been recently proposed focusing on the development of architectures for feature extraction and merging in the cross-spectral domains, but none of them care about the different nature of the given images. This paper focuses on the specific problem of guided thermal image super-resolution, where an LR thermal image is enhanced by an HR visible spectrum image. To improve existing guided super-resolution techniques, a novel scheme is proposed that maps the original guiding information to a thermal image-like representation that is similar to the output. Experimental results evaluating five different approaches demonstrate that the best results are achieved when the guiding and guided images share the same domain.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference SITIS  
  Notes (up) MSIAU Approved no  
  Call Number Admin @ si @ SCS2023c Serial 4011  
Permanent link to this record
 

 
Author Rafael E. Rivadeneira; Angel Sappa; Boris X. Vintimilla; Riad I. Hammoud edit   pdf
doi  openurl
  Title A Novel Domain Transfer-Based Approach for Unsupervised Thermal Image Super-Resolution Type Journal Article
  Year 2022 Publication Sensors Abbreviated Journal SENS  
  Volume 22 Issue 6 Pages 2254  
  Keywords Thermal image super-resolution; unsupervised super-resolution; thermal images; attention module; semiregistered thermal images  
  Abstract This paper presents a transfer domain strategy to tackle the limitations of low-resolution thermal sensors and generate higher-resolution images of reasonable quality. The proposed technique employs a CycleGAN architecture and uses a ResNet as an encoder in the generator along with an attention module and a novel loss function. The network is trained on a multi-resolution thermal image dataset acquired with three different thermal sensors. Results report better performance benchmarking results on the 2nd CVPR-PBVS-2021 thermal image super-resolution challenge than state-of-the-art methods. The code of this work is available online.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) MSIAU; Approved no  
  Call Number Admin @ si @ RSV2022b Serial 3688  
Permanent link to this record
 

 
Author Oscar Argudo; Marc Comino; Antonio Chica; Carlos Andujar; Felipe Lumbreras edit  url
openurl 
  Title Segmentation of aerial images for plausible detail synthesis Type Journal Article
  Year 2018 Publication Computers & Graphics Abbreviated Journal CG  
  Volume 71 Issue Pages 23-34  
  Keywords Terrain editing; Detail synthesis; Vegetation synthesis; Terrain rendering; Image segmentation  
  Abstract The visual enrichment of digital terrain models with plausible synthetic detail requires the segmentation of aerial images into a suitable collection of categories. In this paper we present a complete pipeline for segmenting high-resolution aerial images into a user-defined set of categories distinguishing e.g. terrain, sand, snow, water, and different types of vegetation. This segmentation-for-synthesis problem implies that per-pixel categories must be established according to the algorithms chosen for rendering the synthetic detail. This precludes the definition of a universal set of labels and hinders the construction of large training sets. Since artists might choose to add new categories on the fly, the whole pipeline must be robust against unbalanced datasets, and fast on both training and inference. Under these constraints, we analyze the contribution of common per-pixel descriptors, and compare the performance of state-of-the-art supervised learning algorithms. We report the findings of two user studies. The first one was conducted to analyze human accuracy when manually labeling aerial images. The second user study compares detailed terrains built using different segmentation strategies, including official land cover maps. These studies demonstrate that our approach can be used to turn digital elevation models into fully-featured, detailed terrains with minimal authoring efforts.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0097-8493 ISBN Medium  
  Area Expedition Conference  
  Notes (up) MSIAU; 600.086; 600.118 Approved no  
  Call Number Admin @ si @ ACC2018 Serial 3147  
Permanent link to this record
 

 
Author Gemma Rotger; Felipe Lumbreras; Francesc Moreno-Noguer; Antonio Agudo edit   pdf
doi  openurl
  Title 2D-to-3D Facial Expression Transfer Type Conference Article
  Year 2018 Publication 24th International Conference on Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 2008 - 2013  
  Keywords  
  Abstract Automatically changing the expression and physical features of a face from an input image is a topic that has been traditionally tackled in a 2D domain. In this paper, we bring this problem to 3D and propose a framework that given an
input RGB video of a human face under a neutral expression, initially computes his/her 3D shape and then performs a transfer to a new and potentially non-observed expression. For this purpose, we parameterize the rest shape –obtained from standard factorization approaches over the input video– using a triangular
mesh which is further clustered into larger macro-segments. The expression transfer problem is then posed as a direct mapping between this shape and a source shape, such as the blend shapes of an off-the-shelf 3D dataset of human facial expressions. The mapping is resolved to be geometrically consistent between 3D models by requiring points in specific regions to map on semantic
equivalent regions. We validate the approach on several synthetic and real examples of input faces that largely differ from the source shapes, yielding very realistic expression transfers even in cases with topology changes, such as a synthetic video sequence of a single-eyed cyclops.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICPR  
  Notes (up) MSIAU; 600.086; 600.130; 600.118 Approved no  
  Call Number Admin @ si @ RLM2018 Serial 3232  
Permanent link to this record
 

 
Author Patricia Suarez; Angel Sappa; Boris X. Vintimilla edit   pdf
isbn  openurl
  Title Cross-spectral image dehaze through a dense stacked conditional GAN based approach Type Conference Article
  Year 2018 Publication 14th IEEE International Conference on Signal Image Technology & Internet Based System Abbreviated Journal  
  Volume Issue Pages  
  Keywords Infrared imaging; Dense; Stacked CGAN; Crossspectral; Convolutional networks  
  Abstract This paper proposes a novel approach to remove haze from RGB images using a near infrared images based on a dense stacked conditional Generative Adversarial Network (CGAN). The architecture of the deep network implemented
receives, besides the images with haze, its corresponding image in the near infrared spectrum, which serve to accelerate the learning process of the details of the characteristics of the images. The model uses a triplet layer that allows the independence learning of each channel of the visible spectrum image to remove the haze on each color channel separately. A multiple loss function scheme is proposed, which ensures balanced learning between the colors
and the structure of the images. Experimental results have shown that the proposed method effectively removes the haze from the images. Additionally, the proposed approach is compared with a state of the art approach showing better results.
 
  Address Las Palmas de Gran Canaria; November 2018  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-5386-9385-8 Medium  
  Area Expedition Conference SITIS  
  Notes (up) MSIAU; 600.086; 600.130; 600.122 Approved no  
  Call Number Admin @ si @ SSV2018a Serial 3193  
Permanent link to this record
 

 
Author Jorge Charco; Boris X. Vintimilla; Angel Sappa edit   pdf
openurl 
  Title Deep learning based camera pose estimation in multi-view environment Type Conference Article
  Year 2018 Publication 14th IEEE International Conference on Signal Image Technology & Internet Based System Abbreviated Journal  
  Volume Issue Pages  
  Keywords Deep learning; Camera pose estimation; Multiview environment; Siamese architecture  
  Abstract This paper proposes to use a deep learning network architecture for relative camera pose estimation on a multi-view environment. The proposed network is a variant architecture of AlexNet to use as regressor for prediction the relative translation and rotation as output. The proposed approach is trained from
scratch on a large data set that takes as input a pair of imagesfrom the same scene. This new architecture is compared with a previous approach using standard metrics, obtaining better results on the relative camera pose.
 
  Address Las Palmas de Gran Canaria; November 2018  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference SITIS  
  Notes (up) MSIAU; 600.086; 600.130; 600.122 Approved no  
  Call Number Admin @ si @ CVS2018 Serial 3194  
Permanent link to this record
 

 
Author Patricia Suarez; Angel Sappa; Boris X. Vintimilla; Riad I. Hammoud edit   pdf
doi  openurl
  Title Near InfraRed Imagery Colorization Type Conference Article
  Year 2018 Publication 25th International Conference on Image Processing Abbreviated Journal  
  Volume Issue Pages 2237 - 2241  
  Keywords Convolutional Neural Networks (CNN), Generative Adversarial Network (GAN), Infrared Imagery colorization  
  Abstract This paper proposes a stacked conditional Generative Adversarial Network-based method for Near InfraRed (NIR) imagery colorization. We propose a variant architecture of Generative Adversarial Network (GAN) that uses multiple
loss functions over a conditional probabilistic generative model. We show that this new architecture/loss-function yields better generalization and representation of the generated colored IR images. The proposed approach is evaluated on a large test dataset and compared to recent state of the art methods using standard metrics.
 
  Address Athens; Greece; October 2018  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICIP  
  Notes (up) MSIAU; 600.086; 600.130; 600.122 Approved no  
  Call Number Admin @ si @ SSV2018b Serial 3195  
Permanent link to this record
 

 
Author Patricia Suarez; Angel Sappa; Boris X. Vintimilla edit   pdf
url  openurl
  Title Vegetation Index Estimation from Monospectral Images Type Conference Article
  Year 2018 Publication 15th International Conference on Images Analysis and Recognition Abbreviated Journal  
  Volume 10882 Issue Pages 353-362  
  Keywords  
  Abstract This paper proposes a novel approach to estimate Normalized Difference Vegetation Index (NDVI) from just the red channel of a RGB image. The NDVI index is defined as the ratio of the difference of the red and infrared radiances over their sum. In other words, information from the red channel of a RGB image and the corresponding infrared spectral band are required for its computation. In the current work the NDVI index is estimated just from the red channel by training a Conditional Generative Adversarial Network (CGAN). The architecture proposed for the generative network consists of a single level structure, which combines at the final layer results from convolutional operations together with the given red channel with Gaussian noise to enhance
details, resulting in a sharp NDVI image. Then, the discriminative model
estimates the probability that the NDVI generated index came from the training dataset, rather than the index automatically generated. Experimental results with a large set of real images are provided showing that a Conditional GAN single level model represents an acceptable approach to estimate NDVI index.
 
  Address Povoa de Varzim; Portugal; June 2018  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICIAR  
  Notes (up) MSIAU; 600.086; 600.130; 600.122 Approved no  
  Call Number Admin @ si @ SSV2018c Serial 3196  
Permanent link to this record
 

 
Author Patricia Suarez; Angel Sappa; Boris X. Vintimilla; Riad I. Hammoud edit   pdf
doi  openurl
  Title Deep Learning based Single Image Dehazing Type Conference Article
  Year 2018 Publication 31st IEEE Conference on Computer Vision and Pattern Recognition Workhsop Abbreviated Journal  
  Volume Issue Pages 1250 - 12507  
  Keywords Gallium nitride; Atmospheric modeling; Generators; Generative adversarial networks; Convergence; Image color analysis  
  Abstract This paper proposes a novel approach to remove haze degradations in RGB images using a stacked conditional Generative Adversarial Network (GAN). It employs a triplet of GAN to remove the haze on each color channel independently.
A multiple loss functions scheme, applied over a conditional probabilistic model, is proposed. The proposed GAN architecture learns to remove the haze, using as conditioned entrance, the images with haze from which the clear
images will be obtained. Such formulation ensures a fast model training convergence and a homogeneous model generalization. Experiments showed that the proposed method generates high-quality clear images.
 
  Address Salt Lake City; USA; June 2018  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPRW  
  Notes (up) MSIAU; 600.086; 600.130; 600.122 Approved no  
  Call Number Admin @ si @ SSV2018d Serial 3197  
Permanent link to this record
 

 
Author Gemma Rotger; Francesc Moreno-Noguer; Felipe Lumbreras; Antonio Agudo edit  doi
openurl 
  Title Single view facial hair 3D reconstruction Type Conference Article
  Year 2019 Publication 9th Iberian Conference on Pattern Recognition and Image Analysis Abbreviated Journal  
  Volume 11867 Issue Pages 423-436  
  Keywords 3D Vision; Shape Reconstruction; Facial Hair Modeling  
  Abstract n this work, we introduce a novel energy-based framework that addresses the challenging problem of 3D reconstruction of facial hair from a single RGB image. To this end, we identify hair pixels over the image via texture analysis and then determine individual hair fibers that are modeled by means of a parametric hair model based on 3D helixes. We propose to minimize an energy composed of several terms, in order to adapt the hair parameters that better fit the image detections. The final hairs respond to the resulting fibers after a post-processing step where we encourage further realism. The resulting approach generates realistic facial hair fibers from solely an RGB image without assuming any training data nor user interaction. We provide an experimental evaluation on real-world pictures where several facial hair styles and image conditions are observed, showing consistent results and establishing a comparison with respect to competing approaches.  
  Address Madrid; July 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference IbPRIA  
  Notes (up) MSIAU; 600.086; 600.130; 600.122 Approved no  
  Call Number Admin @ si @ Serial 3707  
Permanent link to this record
 

 
Author Gemma Rotger; Francesc Moreno-Noguer; Felipe Lumbreras; Antonio Agudo edit  url
openurl 
  Title Detailed 3D face reconstruction from a single RGB image Type Journal
  Year 2019 Publication Journal of WSCG Abbreviated Journal JWSCG  
  Volume 27 Issue 2 Pages 103-112  
  Keywords 3D Wrinkle Reconstruction; Face Analysis, Optimization.  
  Abstract This paper introduces a method to obtain a detailed 3D reconstruction of facial skin from a single RGB image.
To this end, we propose the exclusive use of an input image without requiring any information about the observed material nor training data to model the wrinkle properties. They are detected and characterized directly from the image via a simple and effective parametric model, determining several features such as location, orientation, width, and height. With these ingredients, we propose to minimize a photometric error to retrieve the final detailed 3D map, which is initialized by current techniques based on deep learning. In contrast with other approaches, we only require estimating a depth parameter, making our approach fast and intuitive. Extensive experimental evaluation is presented in a wide variety of synthetic and real images, including different skin properties and facial
expressions. In all cases, our method outperforms the current approaches regarding 3D reconstruction accuracy, providing striking results for both large and fine wrinkles.
 
  Address 2019/11  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) MSIAU; 600.086; 600.130; 600.122 Approved no  
  Call Number Admin @ si @ Serial 3708  
Permanent link to this record
 

 
Author Cristhian A. Aguilera-Carrasco; C. Aguilera; Angel Sappa edit   pdf
doi  openurl
  Title Melamine Faced Panels Defect Classification beyond the Visible Spectrum Type Journal Article
  Year 2018 Publication Sensors Abbreviated Journal SENS  
  Volume 18 Issue 11 Pages 1-10  
  Keywords industrial application; infrared; machine learning  
  Abstract In this work, we explore the use of images from different spectral bands to classify defects in melamine faced panels, which could appear through the production process. Through experimental evaluation, we evaluate the use of images from the visible (VS), near-infrared (NIR), and long wavelength infrared (LWIR), to classify the defects using a feature descriptor learning approach together with a support vector machine classifier. Two descriptors were evaluated, Extended Local Binary Patterns (E-LBP) and SURF using a Bag of Words (BoW) representation. The evaluation was carried on with an image set obtained during this work, which contained five different defect categories that currently occurs in the industry. Results show that using images from beyond the visual spectrum helps to improve classification performance in contrast with a single visible spectrum solution.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) MSIAU; 600.122 Approved no  
  Call Number Admin @ si @ AAS2018 Serial 3191  
Permanent link to this record
 

 
Author Xavier Soria; Angel Sappa edit   pdf
openurl 
  Title Improving Edge Detection in RGB Images by Adding NIR Channel Type Conference Article
  Year 2018 Publication 14th IEEE International Conference on Signal Image Technology & Internet Based System Abbreviated Journal  
  Volume Issue Pages  
  Keywords Edge detection; Contour detection; VGG; CNN; RGB-NIR; Near infrared images  
  Abstract The edge detection is yet a critical problem in many computer vision and image processing tasks. The manuscript presents an Holistically-Nested Edge Detection based approach to study the inclusion of Near-Infrared in the Visible spectrum
images. To do so, a Single Sensor based dataset has been acquired in the range of 400nm to 1100nm wavelength spectral band. Prominent results have been obtained even when the ground truth (annotated edge-map) is based in the visible wavelength spectrum.
 
  Address Las Palmas de Gran Canaria; November 2018  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference SITIS  
  Notes (up) MSIAU; 600.122 Approved no  
  Call Number Admin @ si @ SoS2018 Serial 3192  
Permanent link to this record
 

 
Author Axel Barroso-Laguna; Edgar Riba; Daniel Ponsa; Krystian Mikolajczyk edit   pdf
url  doi
openurl 
  Title Key.Net: Keypoint Detection by Handcrafted and Learned CNN Filters Type Conference Article
  Year 2019 Publication 18th IEEE International Conference on Computer Vision Abbreviated Journal  
  Volume Issue Pages 5835-5843  
  Keywords  
  Abstract We introduce a novel approach for keypoint detection task that combines handcrafted and learned CNN filters within a shallow multi-scale architecture. Handcrafted filters provide anchor structures for learned filters, which localize, score and rank repeatable features. Scale-space representation is used within the network to extract keypoints at different levels. We design a loss function to detect robust features that exist across a range of scales and to maximize the repeatability score. Our Key.Net model is trained on data synthetically created from ImageNet and evaluated on HPatches benchmark. Results show that our approach outperforms state-of-the-art detectors in terms of repeatability, matching performance and complexity.  
  Address Seul; Corea; October 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICCV  
  Notes (up) MSIAU; 600.122 Approved no  
  Call Number Admin @ si @ BRP2019 Serial 3290  
Permanent link to this record
 

 
Author Xavier Soria edit  isbn
openurl 
  Title Single sensor multi-spectral imaging Type Book Whole
  Year 2019 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract The image sensor, nowadays, is rolling the smartphone industry. While some phone brands explore equipping more image sensors, others, like Google, maintain their smartphones with just one sensor; but this sensor is equipped with Deep Learning to enhance the image quality. However, what all brands agree on is the need to research new image sensors; for instance, in 2015 Omnivision and PixelTeq presented new CMOS based image sensors defined as multispectral Single Sensor Camera (SSC), which are capable of capturing multispectral bands. This dissertation presents the benefits of using a multispectral SSCs that, as aforementioned, simultaneously acquires images in the visible and near-infrared (NIR) bands. The principal benefits while addressing problems related to image bands in the spectral range of 400 to 1100 nanometers, there are cost reductions in the hardware and software setup because only one SSC is needed instead of two, and the images alignment are not required any more. Concerning to the NIR spectrum, many works in literature have proven the benefits of working with NIR to enhance RGB images (e.g., image enhancement, remove shadows, dehazing, etc.). In spite of the advantage of using SSC (e.g., low latency), there are some drawback to be solved. One of this drawback corresponds to the nature of the silicon-based sensor, which in addition to capture the RGB image, when the infrared cut off filter is not installed it also acquires NIR information into the visible image. This phenomenon is called RGB and NIR crosstalking. This thesis firstly faces this problem in challenging images and then it shows the benefit of using multispectral images in the edge detection task.
The RGB color restoration from RGBN image is the topic tackled in RGB and NIR crosstalking. Even though in the literature a set of processes have been proposed to face this issue, in this thesis novel approaches, based on DL, are proposed to subtract the additional NIR included in the RGB channel. More precisely, an Artificial Neural Network (NN) and two Convolutional Neural Network (CNN) models are proposed. As the DL based models need a dataset with a large collection of image pairs, a large dataset is collected to address the color restoration. The collected images are from challenging scenes where the sunlight radiation is sufficient to give absorption/reflectance properties to the considered scenes. An extensive evaluation has been conducted on the CNN models, differences from most of the restored images are almost imperceptible to the human eye. The next proposal of the thesis is the validation of the usage of SSC images in the edge detection task. Three methods based on CNN have been proposed. While the first one is based on the most used model, holistically-nested edge detection (HED) termed as multispectral HED (MS-HED), the other two have been proposed observing the drawbacks of MS-HED. These two novel architectures have been designed from scratch (training from scratch); after the first architecture is validated in the visible domain a slight redesign is proposed to tackle the multispectral domain. Again, another dataset is collected to face this problem with SSCs. Even though edge detection is confronted in the multispectral domain, its qualitative and quantitative evaluation demonstrates the generalization in other datasets used for edge detection, improving state-of-the-art results.
 
  Address September 2019  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Angel Sappa  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-948531-9-7 Medium  
  Area Expedition Conference  
  Notes (up) MSIAU; 600.122 Approved no  
  Call Number Admin @ si @ Sor2019 Serial 3391  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: