toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author David Berga; Xavier Otazu edit  doi
openurl 
  Title A neurodynamic model of saliency prediction in v1 Type Journal Article
  Year 2022 Publication Neural Computation Abbreviated Journal NEURALCOMPUT  
  Volume 34 Issue 2 Pages 378-414  
  Keywords  
  Abstract Lateral connections in the primary visual cortex (V1) have long been hypothesized to be responsible for several visual processing mechanisms such as brightness induction, chromatic induction, visual discomfort, and bottom-up visual attention (also named saliency). Many computational models have been developed to independently predict these and other visual processes, but no computational model has been able to reproduce all of them simultaneously. In this work, we show that a biologically plausible computational model of lateral interactions of V1 is able to simultaneously predict saliency and all the aforementioned visual processes. Our model's architecture (NSWAM) is based on Penacchio's neurodynamic model of lateral connections of V1. It is defined as a network of firing rate neurons, sensitive to visual features such as brightness, color, orientation, and scale. We tested NSWAM saliency predictions using images from several eye tracking data sets. We show that the accuracy of predictions obtained by our architecture, using shuffled metrics, is similar to other state-of-the-art computational methods, particularly with synthetic images (CAT2000-Pattern and SID4VAM) that mainly contain low-level features. Moreover, we outperform other biologically inspired saliency models that are specifically designed to exclusively reproduce saliency. We show that our biologically plausible model of lateral connections can simultaneously explain different visual processes present in V1 (without applying any type of training or optimization and keeping the same parameterization for all the visual processes). This can be useful for the definition of a unified architecture of the primary visual cortex.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (down) NEUROBIT; 600.128; 600.120 Approved no  
  Call Number Admin @ si @ BeO2022 Serial 3696  
Permanent link to this record
 

 
Author C. Alejandro Parraga; Xavier Otazu; Arash Akbarinia edit  openurl
  Title Modelling symmetry perception with banks of quadrature convolutional Gabor kernels Type Conference Article
  Year 2019 Publication 42nd edition of the European Conference on Visual Perception Abbreviated Journal  
  Volume Issue Pages 224-224  
  Keywords  
  Abstract Mirror symmetry is a property most likely to be encountered in animals than in medium scale vegetation or inanimate objects in the natural world. This might be the reason why the human visual system has evolved to detect it quickly and robustly. Indeed, the perception of symmetry assists higher-level visual processing that are crucial for survival such as target recognition and identification irrespective of position and location. Although the task of detecting symmetrical objects seems effortless to us, it is very challenging for computers (to the extent that it has been proposed as a robust “captcha” by Funk & Liu in 2016). Indeed, the exact mechanism of symmetry detection in primates is not well understood: fMRI studies have shown that symmetrical shapes activate specific higher-level areas of the visual cortex (Sasaki et al.; 2005) and similarly, a large body of psychophysical experiments suggest that the symmetry perception is critically influenced by low-level mechanisms (Treder; 2010). In this work we attempt to find plausible low-level mechanisms that might form the basis for symmetry perception. Our simple model is made from banks of (i) odd-symmetric Gabors (resembling edge-detecting V1 neurons); and (ii) banks of larger odd- and even-symmetric Gabors (resembling higher visual cortex neurons), that pool signals from the 'edge image'. As reported previously (Akbarinia et al, ECVP2017), the convolution of the symmetrical lines with the two Gabor kernels of alternative phase produces a minimum in one and a maximum in the other (Osorio; 1996), and the rectification and combination of these signals create lines which hint of mirror symmetry in natural images. We improved the algorithm by combining these signals across several spatial scales. Our preliminary results suggest that such multiscale combination of convolutional operations might form the basis for much of the operation of the HVS in terms of symmetry detection and representation.  
  Address Leuven; Belgium; August 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ECVP  
  Notes (down) NEUROBIT; 600.128 Approved no  
  Call Number Admin @ si @ POA2019 Serial 3371  
Permanent link to this record
 

 
Author David Berga; Xose R. Fernandez-Vidal; Xavier Otazu; Xose M. Pardo edit   pdf
url  doi
openurl 
  Title SID4VAM: A Benchmark Dataset with Synthetic Images for Visual Attention Modeling Type Conference Article
  Year 2019 Publication 18th IEEE International Conference on Computer Vision Abbreviated Journal  
  Volume Issue Pages 8788-8797  
  Keywords  
  Abstract A benchmark of saliency models performance with a synthetic image dataset is provided. Model performance is evaluated through saliency metrics as well as the influence of model inspiration and consistency with human psychophysics. SID4VAM is composed of 230 synthetic images, with known salient regions. Images were generated with 15 distinct types of low-level features (e.g. orientation, brightness, color, size...) with a target-distractor popout type of synthetic patterns. We have used Free-Viewing and Visual Search task instructions and 7 feature contrasts for each feature category. Our study reveals that state-ofthe-art Deep Learning saliency models do not perform well with synthetic pattern images, instead, models with Spectral/Fourier inspiration outperform others in saliency metrics and are more consistent with human psychophysical experimentation. This study proposes a new way to evaluate saliency models in the forthcoming literature, accounting for synthetic images with uniquely low-level feature contexts, distinct from previous eye tracking image datasets.  
  Address Seul; Corea; October 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICCV  
  Notes (down) NEUROBIT; 600.128 Approved no  
  Call Number Admin @ si @ BFO2019b Serial 3372  
Permanent link to this record
 

 
Author David Berga; Xose R. Fernandez-Vidal; Xavier Otazu; Victor Leboran; Xose M. Pardo edit  openurl
  Title Measuring bottom-up visual attention in eye tracking experimentation with synthetic images Type Conference Article
  Year 2019 Publication 8th Iberian Conference on Perception Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract A benchmark of saliency models performance with a synthetic image dataset is provided. Model performance is evaluated through saliency metrics as well as the influence of model inspiration and consistency with human psychophysics. SID4VAM is composed of 230 synthetic images, with known salient regions. Images were generated with 15 distinct types of low-level features (e.g. orientation, brightness, color, size...) with a target-distractor pop-out type of synthetic patterns. We have used Free-Viewing and Visual Search task instructions and 7 feature contrasts for each feature category. Our study reveals that state-of-the-art Deep Learning saliency models do not perform well with synthetic pattern images, instead, models with Spectral/Fourier inspiration outperform others in saliency metrics and are more consistent with human psychophysical experimentation. This study proposes a new way to evaluate saliency models in the forthcoming literature, accounting for synthetic images with uniquely low-level feature contexts, distinct from previous eye tracking image datasets.  
  Address San Lorenzo El Escorial; July 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CIP  
  Notes (down) NEUROBIT; 600.128 Approved no  
  Call Number Admin @ si @ BFO2019c Serial 3375  
Permanent link to this record
 

 
Author Xim Cerda-Company; C. Alejandro Parraga; Xavier Otazu edit   pdf
url  doi
openurl 
  Title Which tone-mapping operator is the best? A comparative study of perceptual quality Type Journal Article
  Year 2018 Publication Journal of the Optical Society of America A Abbreviated Journal JOSA A  
  Volume 35 Issue 4 Pages 626-638  
  Keywords  
  Abstract Tone-mapping operators (TMO) are designed to generate perceptually similar low-dynamic range images from high-dynamic range ones. We studied the performance of fifteen TMOs in two psychophysical experiments where observers compared the digitally-generated tone-mapped images to their corresponding physical scenes. All experiments were performed in a controlled environment and the setups were
designed to emphasize different image properties: in the first experiment we evaluated the local relationships among intensity-levels, and in the second one we evaluated global visual appearance among physical scenes and tone-mapped images, which were presented side by side. We ranked the TMOs according
to how well they reproduced the results obtained in the physical scene. Our results show that ranking position clearly depends on the adopted evaluation criteria, which implies that, in general, these tone-mapping algorithms consider either local or global image attributes but rarely both. Regarding the
question of which TMO is the best, KimKautz [1] and Krawczyk [2] obtained the better results across the different experiments. We conclude that a more thorough and standardized evaluation criteria is needed to study all the characteristics of TMOs, as there is ample room for improvement in future developments.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (down) NEUROBIT; 600.120; 600.128 Approved no  
  Call Number Admin @ si @ CPO2018 Serial 3088  
Permanent link to this record
 

 
Author Xim Cerda-Company; Xavier Otazu; Nilai Sallent; C. Alejandro Parraga edit   pdf
doi  openurl
  Title The effect of luminance differences on color assimilation Type Journal Article
  Year 2018 Publication Journal of Vision Abbreviated Journal JV  
  Volume 18 Issue 11 Pages 10-10  
  Keywords  
  Abstract The color appearance of a surface depends on the color of its surroundings (inducers). When the perceived color shifts towards that of the surroundings, the effect is called “color assimilation” and when it shifts away from the surroundings it is called “color contrast.” There is also evidence that the phenomenon depends on the spatial configuration of the inducer, e.g., uniform surrounds tend to induce color contrast and striped surrounds tend to induce color assimilation. However, previous work found that striped surrounds under certain conditions do not induce color assimilation but induce color contrast (or do not induce anything at all), suggesting that luminance differences and high spatial frequencies could be key factors in color assimilation. Here we present a new psychophysical study of color assimilation where we assessed the contribution of luminance differences (between the target and its surround) present in striped stimuli. Our results show that luminance differences are key factors in color assimilation for stimuli varying along the s axis of MacLeod-Boynton color space, but not for stimuli varying along the l axis. This asymmetry suggests that koniocellular neural mechanisms responsible for color assimilation only contribute when there is a luminance difference, supporting the idea that mutual-inhibition has a major role in color induction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (down) NEUROBIT; 600.120; 600.128 Approved no  
  Call Number Admin @ si @ COS2018 Serial 3148  
Permanent link to this record
 

 
Author Xim Cerda-Company; Xavier Otazu edit   pdf
doi  openurl
  Title Color induction in equiluminant flashed stimuli Type Journal Article
  Year 2019 Publication Journal of the Optical Society of America A Abbreviated Journal JOSA A  
  Volume 36 Issue 1 Pages 22-31  
  Keywords  
  Abstract Color induction is the influence of the surrounding color (inducer) on the perceived color of a central region. There are two different types of color induction: color contrast (the color of the central region shifts away from that of the inducer) and color assimilation (the color shifts towards the color of the inducer). Several studies on these effects have used uniform and striped surrounds, reporting color contrast and color assimilation, respectively. Other authors [J. Vis. 12(1), 22 (2012) [CrossRef] ] have studied color induction using flashed uniform surrounds, reporting that the contrast is higher for shorter flash duration. Extending their study, we present new psychophysical results using both flashed and static (i.e., non-flashed) equiluminant stimuli for both striped and uniform surrounds. Similarly to them, for uniform surround stimuli we observed color contrast, but we did not obtain the maximum contrast for the shortest (10 ms) flashed stimuli, but for 40 ms. We only observed this maximum contrast for red, green, and lime inducers, while for a purple inducer we obtained an asymptotic profile along the flash duration. For striped stimuli, we observed color assimilation only for the static (infinite flash duration) red–green surround inducers (red first inducer, green second inducer). For the other inducers’ configurations, we observed color contrast or no induction. Since other studies showed that non-equiluminant striped static stimuli induce color assimilation, our results also suggest that luminance differences could be a key factor to induce it.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (down) NEUROBIT; 600.120; 600.128 Approved no  
  Call Number Admin @ si @ CeO2019 Serial 3226  
Permanent link to this record
 

 
Author Arash Akbarinia; C. Alejandro Parraga edit   pdf
openurl 
  Title Biologically plausible boundary detection Type Conference Article
  Year 2016 Publication 27th British Machine Vision Conference Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Edges are key components of any visual scene to the extent that we can recognise objects merely by their silhouettes. The human visual system captures edge information through neurons in the visual cortex that are sensitive to both intensity discontinuities and particular orientations. The “classical approach” assumes that these cells are only responsive to the stimulus present within their receptive fields, however, recent studies demonstrate that surrounding regions and inter-areal feedback connections influence their responses significantly. In this work we propose a biologically-inspired edge detection model in which orientation selective neurons are represented through the first derivative of a Gaussian function resembling double-opponent cells in the primary visual cortex (V1). In our model we account for four kinds of surround, i.e. full, far, iso- and orthogonal-orientation, whose contributions are contrast-dependant. The output signal from V1 is pooled in its perpendicular direction by larger V2 neurons employing a contrast-variant centre-surround kernel. We further introduce a feedback connection from higher-level visual areas to the lower ones. The results of our model on two benchmark datasets show a big improvement compared to the current non-learning and biologically-inspired state-of-the-art algorithms while being competitive to the learning-based methods.  
  Address York; UK; September 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference BMVC  
  Notes (down) NEUROBIT; 600.068; 600.072 Approved no  
  Call Number Admin @ si @ AkP2016a Serial 2867  
Permanent link to this record
 

 
Author Arash Akbarinia; C. Alejandro Parraga edit   pdf
doi  openurl
  Title Colour Constancy Beyond the Classical Receptive Field Type Journal Article
  Year 2018 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume 40 Issue 9 Pages 2081 - 2094  
  Keywords  
  Abstract The problem of removing illuminant variations to preserve the colours of objects (colour constancy) has already been solved by the human brain using mechanisms that rely largely on centre-surround computations of local contrast. In this paper we adopt some of these biological solutions described by long known physiological findings into a simple, fully automatic, functional model (termed Adaptive Surround Modulation or ASM). In ASM, the size of a visual neuron's receptive field (RF) as well as the relationship with its surround varies according to the local contrast within the stimulus, which in turn determines the nature of the centre-surround normalisation of cortical neurons higher up in the processing chain. We modelled colour constancy by means of two overlapping asymmetric Gaussian kernels whose sizes are adapted based on the contrast of the surround pixels, resembling the change of RF size. We simulated the contrast-dependent surround modulation by weighting the contribution of each Gaussian according to the centre-surround contrast. In the end, we obtained an estimation of the illuminant from the set of the most activated RFs' outputs. Our results on three single-illuminant and one multi-illuminant benchmark datasets show that ASM is highly competitive against the state-of-the-art and it even outperforms learning-based algorithms in one case. Moreover, the robustness of our model is more tangible if we consider that our results were obtained using the same parameters for all datasets, that is, mimicking how the human visual system operates. These results might provide an insight on how dynamical adaptation mechanisms contribute to make object's colours appear constant to us.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (down) NEUROBIT; 600.068; 600.072 Approved no  
  Call Number Admin @ si @ AkP2018a Serial 2990  
Permanent link to this record
 

 
Author Arash Akbarinia; C. Alejandro Parraga edit   pdf
url  openurl
  Title Feedback and Surround Modulated Boundary Detection Type Journal Article
  Year 2018 Publication International Journal of Computer Vision Abbreviated Journal IJCV  
  Volume 126 Issue 12 Pages 1367–1380  
  Keywords Boundary detection; Surround modulation; Biologically-inspired vision  
  Abstract Edges are key components of any visual scene to the extent that we can recognise objects merely by their silhouettes. The human visual system captures edge information through neurons in the visual cortex that are sensitive to both intensity discontinuities and particular orientations. The “classical approach” assumes that these cells are only responsive to the stimulus present within their receptive fields, however, recent studies demonstrate that surrounding regions and inter-areal feedback connections influence their responses significantly. In this work we propose a biologically-inspired edge detection model in which orientation selective neurons are represented through the first derivative of a Gaussian function resembling double-opponent cells in the primary visual cortex (V1). In our model we account for four kinds of receptive field surround, i.e. full, far, iso- and orthogonal-orientation, whose contributions are contrast-dependant. The output signal from V1 is pooled in its perpendicular direction by larger V2 neurons employing a contrast-variant centre-surround kernel. We further introduce a feedback connection from higher-level visual areas to the lower ones. The results of our model on three benchmark datasets show a big improvement compared to the current non-learning and biologically-inspired state-of-the-art algorithms while being competitive to the learning-based methods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (down) NEUROBIT; 600.068; 600.072 Approved no  
  Call Number Admin @ si @ AkP2018b Serial 2991  
Permanent link to this record
 

 
Author Arash Akbarinia; Raquel Gil Rodriguez; C. Alejandro Parraga edit   pdf
openurl 
  Title Colour Constancy: Biologically-inspired Contrast Variant Pooling Mechanism Type Conference Article
  Year 2017 Publication 28th British Machine Vision Conference Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Pooling is a ubiquitous operation in image processing algorithms that allows for higher-level processes to collect relevant low-level features from a region of interest. Currently, max-pooling is one of the most commonly used operators in the computational literature. However, it can lack robustness to outliers due to the fact that it relies merely on the peak of a function. Pooling mechanisms are also present in the primate visual cortex where neurons of higher cortical areas pool signals from lower ones. The receptive fields of these neurons have been shown to vary according to the contrast by aggregating signals over a larger region in the presence of low contrast stimuli. We hypothesise that this contrast-variant-pooling mechanism can address some of the shortcomings of maxpooling. We modelled this contrast variation through a histogram clipping in which the percentage of pooled signal is inversely proportional to the local contrast of an image. We tested our hypothesis by applying it to the phenomenon of colour constancy where a number of popular algorithms utilise a max-pooling step (e.g. White-Patch, Grey-Edge and Double-Opponency). For each of these methods, we investigated the consequences of replacing their original max-pooling by the proposed contrast-variant-pooling. Our experiments on three colour constancy benchmark datasets suggest that previous results can significantly improve by adopting a contrast-variant-pooling mechanism.  
  Address London; September 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference BMVC  
  Notes (down) NEUROBIT; 600.068; 600.072 Approved no  
  Call Number Admin @ si @ AGP2017 Serial 2992  
Permanent link to this record
 

 
Author Arash Akbarinia; C. Alejandro Parraga edit   pdf
url  openurl
  Title Biologically Plausible Colour Naming Model Type Conference Article
  Year 2015 Publication European Conference on Visual Perception ECVP2015 Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Poster  
  Address Liverpool; UK; August 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ECVP  
  Notes (down) NEUROBIT; 600.068 Approved no  
  Call Number Admin @ si @ AkP2015 Serial 2660  
Permanent link to this record
 

 
Author C. Alejandro Parraga; Arash Akbarinia edit   pdf
doi  openurl
  Title NICE: A Computational Solution to Close the Gap from Colour Perception to Colour Categorization Type Journal Article
  Year 2016 Publication PLoS One Abbreviated Journal Plos  
  Volume 11 Issue 3 Pages e0149538  
  Keywords  
  Abstract The segmentation of visible electromagnetic radiation into chromatic categories by the human visual system has been extensively studied from a perceptual point of view, resulting in several colour appearance models. However, there is currently a void when it comes to relate these results to the physiological mechanisms that are known to shape the pre-cortical and cortical visual pathway. This work intends to begin to fill this void by proposing a new physiologically plausible model of colour categorization based on Neural Isoresponsive Colour Ellipsoids (NICE) in the cone-contrast space defined by the main directions of the visual signals entering the visual cortex. The model was adjusted to fit psychophysical measures that concentrate on the categorical boundaries and are consistent with the ellipsoidal isoresponse surfaces of visual cortical neurons. By revealing the shape of such categorical colour regions, our measures allow for a more precise and parsimonious description, connecting well-known early visual processing mechanisms to the less understood phenomenon of colour categorization. To test the feasibility of our method we applied it to exemplary images and a popular ground-truth chart obtaining labelling results that are better than those of current state-of-the-art algorithms.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (down) NEUROBIT; 600.068 Approved no  
  Call Number Admin @ si @ PaA2016a Serial 2747  
Permanent link to this record
 

 
Author Eduardo Tusa; Arash Akbarinia; Raquel Gil Rodriguez; Corina Barbalata edit   pdf
url  doi
openurl 
  Title Real-Time Face Detection and Tracking Utilising OpenMP and ROS Type Conference Article
  Year 2015 Publication 3rd Asia-Pacific Conference on Computer Aided System Engineering Abbreviated Journal  
  Volume Issue Pages 179 - 184  
  Keywords RGB-D; Kinect; Human Detection and Tracking; ROS; OpenMP  
  Abstract The first requisite of a robot to succeed in social interactions is accurate human localisation, i.e. subject detection and tracking. Later, it is estimated whether an interaction partner seeks attention, for example by interpreting the position and orientation of the body. In computer vision, these cues usually are obtained in colour images, whose qualities are degraded in ill illuminated social scenes. In these scenarios depth sensors offer a richer representation. Therefore, it is important to combine colour and depth information. The
second aspect that plays a fundamental role in the acceptance of social robots is their real-time-ability. Processing colour and depth images is computationally demanding. To overcome this we propose a parallelisation strategy of face detection and tracking based on two different architectures: message passing and shared memory. Our results demonstrate high accuracy in
low computational time, processing nine times more number of frames in a parallel implementation. This provides a real-time social robot interaction.
 
  Address Quito; Ecuador; July 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference APCASE  
  Notes (down) NEUROBIT Approved no  
  Call Number Admin @ si @ TAG2015 Serial 2659  
Permanent link to this record
 

 
Author Arash Akbarinia; C. Alejandro Parraga edit  openurl
  Title Dynamically Adjusted Surround Contrast Enhances Boundary Detection, European Conference on Visual Perception Type Conference Article
  Year 2016 Publication European Conference on Visual Perception Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address Barcelona; Spain; August 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ECVP  
  Notes (down) NEUROBIT Approved no  
  Call Number Admin @ si @ AkP2016b Serial 2900  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: