|
Sergio Escalera, Vassilis Athitsos, & Isabelle Guyon. (2017). Challenges in Multi-modal Gesture Recognition. (pp. 1–60).
Abstract: This paper surveys the state of the art on multimodal gesture recognition and introduces the JMLR special topic on gesture recognition 2011–2015. We began right at the start of the Kinect TMTM revolution when inexpensive infrared cameras providing image depth recordings became available. We published papers using this technology and other more conventional methods, including regular video cameras, to record data, thus providing a good overview of uses of machine learning and computer vision using multimodal data in this area of application. Notably, we organized a series of challenges and made available several datasets we recorded for that purpose, including tens of thousands of videos, which are available to conduct further research. We also overview recent state of the art works on gesture recognition based on a proposed taxonomy for gesture recognition, discussing challenges and future lines of research.
Keywords: Gesture recognition; Time series analysis; Multimodal data analysis; Computer vision; Pattern recognition; Wearable sensors; Infrared cameras; Kinect TMTM
|
|
|
Mohammad Ali Bagheri, Qigang Gao, Sergio Escalera, Huamin Ren, Thomas B. Moeslund, & Elham Etemad. (2017). Locality Regularized Group Sparse Coding for Action Recognition. CVIU - Computer Vision and Image Understanding, 158, 106–114.
Abstract: Bag of visual words (BoVW) models are widely utilized in image/ video representation and recognition. The cornerstone of these models is the encoding stage, in which local features are decomposed over a codebook in order to obtain a representation of features. In this paper, we propose a new encoding algorithm by jointly encoding the set of local descriptors of each sample and considering the locality structure of descriptors. The proposed method takes advantages of locality coding such as its stability and robustness to noise in descriptors, as well as the strengths of the group coding strategy by taking into account the potential relation among descriptors of a sample. To efficiently implement our proposed method, we consider the Alternating Direction Method of Multipliers (ADMM) framework, which results in quadratic complexity in the problem size. The method is employed for a challenging classification problem: action recognition by depth cameras. Experimental results demonstrate the outperformance of our methodology compared to the state-of-the-art on the considered datasets.
Keywords: Bag of words; Feature encoding; Locality constrained coding; Group sparse coding; Alternating direction method of multipliers; Action recognition
|
|
|
Mark Philip Philipsen, Jacob Velling Dueholm, Anders Jorgensen, Sergio Escalera, & Thomas B. Moeslund. (2018). Organ Segmentation in Poultry Viscera Using RGB-D. SENS - Sensors, 18(1), 117.
Abstract: We present a pattern recognition framework for semantic segmentation of visual structures, that is, multi-class labelling at pixel level, and apply it to the task of segmenting organs in the eviscerated viscera from slaughtered poultry in RGB-D images. This is a step towards replacing the current strenuous manual inspection at poultry processing plants. Features are extracted from feature maps such as activation maps from a convolutional neural network (CNN). A random forest classifier assigns class probabilities, which are further refined by utilizing context in a conditional random field. The presented method is compatible with both 2D and 3D features, which allows us to explore the value of adding 3D and CNN-derived features. The dataset consists of 604 RGB-D images showing 151 unique sets of eviscerated viscera from four different perspectives. A mean Jaccard index of 78.11% is achieved across the four classes of organs by using features derived from 2D, 3D and a CNN, compared to 74.28% using only basic 2D image features.
Keywords: semantic segmentation; RGB-D; random forest; conditional random field; 2D; 3D; CNN
|
|
|
Shanxin Yuan, Guillermo Garcia-Hernando, Bjorn Stenger, Gyeongsik Moon, Ju Yong Chang, Kyoung Mu Lee, et al. (2018). Depth-Based 3D Hand Pose Estimation: From Current Achievements to Future Goals. In 31st IEEE Conference on Computer Vision and Pattern Recognition (pp. 2636–2645).
Abstract: In this paper, we strive to answer two questions: What is the current state of 3D hand pose estimation from depth images? And, what are the next challenges that need to be tackled? Following the successful Hands In the Million Challenge (HIM2017), we investigate the top 10 state-of-the-art methods on three tasks: single frame 3D pose estimation, 3D hand tracking, and hand pose estimation during object interaction. We analyze the performance of different CNN structures with regard to hand shape, joint visibility, view point and articulation distributions. Our findings include: (1) isolated 3D hand pose estimation achieves low mean errors (10 mm) in the view point range of [70, 120] degrees, but it is far from being solved for extreme view points; (2) 3D volumetric representations outperform 2D CNNs, better capturing the spatial structure of the depth data; (3) Discriminative methods still generalize poorly to unseen hand shapes; (4) While joint occlusions pose a challenge for most methods, explicit modeling of structure constraints can significantly narrow the gap between errors on visible and occluded joints.
Keywords: Three-dimensional displays; Task analysis; Pose estimation; Two dimensional displays; Joints; Training; Solid modeling
|
|
|
Mohammad A. Haque, Ruben B. Bautista, Kamal Nasrollahi, Sergio Escalera, Christian B. Laursen, Ramin Irani, et al. (2018). Deep Multimodal Pain Recognition: A Database and Comparision of Spatio-Temporal Visual Modalities, Faces and Gestures. In 13th IEEE Conference on Automatic Face and Gesture Recognition (pp. 250–257).
Abstract: Pain is a symptom of many disorders associated with actual or potential tissue damage in human body. Managing pain is not only a duty but also highly cost prone. The most primitive state of pain management is the assessment of pain. Traditionally it was accomplished by self-report or visual inspection by experts. However, automatic pain assessment systems from facial videos are also rapidly evolving due to the need of managing pain in a robust and cost effective way. Among different challenges of automatic pain assessment from facial video data two issues are increasingly prevalent: first, exploiting both spatial and temporal information of the face to assess pain level, and second, incorporating multiple visual modalities to capture complementary face information related to pain. Most works in the literature focus on merely exploiting spatial information on chromatic (RGB) video data on shallow learning scenarios. However, employing deep learning techniques for spatio-temporal analysis considering Depth (D) and Thermal (T) along with RGB has high potential in this area. In this paper, we present the first state-of-the-art publicly available database, 'Multimodal Intensity Pain (MIntPAIN)' database, for RGBDT pain level recognition in sequences. We provide a first baseline results including 5 pain levels recognition by analyzing independent visual modalities and their fusion with CNN and LSTM models. From the experimental evaluation we observe that fusion of modalities helps to enhance recognition performance of pain levels in comparison to isolated ones. In particular, the combination of RGB, D, and T in an early fusion fashion achieved the best recognition rate.
|
|
|
Mohamed Ilyes Lakhal, Hakan Çevikalp, Sergio Escalera, & Ferda Ofli. (2018). Recurrent Neural Networks for Remote Sensing Image Classification. IETCV - IET Computer Vision, 12(7), 1040–1045.
Abstract: Automatically classifying an image has been a central problem in computer vision for decades. A plethora of models has been proposed, from handcrafted feature solutions to more sophisticated approaches such as deep learning. The authors address the problem of remote sensing image classification, which is an important problem to many real world applications. They introduce a novel deep recurrent architecture that incorporates high-level feature descriptors to tackle this challenging problem. Their solution is based on the general encoder–decoder framework. To the best of the authors’ knowledge, this is the first study to use a recurrent network structure on this task. The experimental results show that the proposed framework outperforms the previous works in the three datasets widely used in the literature. They have achieved a state-of-the-art accuracy rate of 97.29% on the UC Merced dataset.
|
|
|
Pichao Wang, Wanqing Li, Philip Ogunbona, Jun Wan, & Sergio Escalera. (2018). RGB-D-based Human Motion Recognition with Deep Learning: A Survey. CVIU - Computer Vision and Image Understanding, 171, 118–139.
Abstract: Human motion recognition is one of the most important branches of human-centered research activities. In recent years, motion recognition based on RGB-D data has attracted much attention. Along with the development in artificial intelligence, deep learning techniques have gained remarkable success in computer vision. In particular, convolutional neural networks (CNN) have achieved great success for image-based tasks, and recurrent neural networks (RNN) are renowned for sequence-based problems. Specifically, deep learning methods based on the CNN and RNN architectures have been adopted for motion recognition using RGB-D data. In this paper, a detailed overview of recent advances in RGB-D-based motion recognition is presented. The reviewed methods are broadly categorized into four groups, depending on the modality adopted for recognition: RGB-based, depth-based, skeleton-based and RGB+D-based. As a survey focused on the application of deep learning to RGB-D-based motion recognition, we explicitly discuss the advantages and limitations of existing techniques. Particularly, we highlighted the methods of encoding spatial-temporal-structural information inherent in video sequence, and discuss potential directions for future research.
Keywords: Human motion recognition; RGB-D data; Deep learning; Survey
|
|
|
Albert Clapes, Alex Pardo, Oriol Pujol, & Sergio Escalera. (2018). Action detection fusing multiple Kinects and a WIMU: an application to in-home assistive technology for the elderly. MVAP - Machine Vision and Applications, 29(5), 765–788.
Abstract: We present a vision-inertial system which combines two RGB-Depth devices together with a wearable inertial movement unit in order to detect activities of the daily living. From multi-view videos, we extract dense trajectories enriched with a histogram of normals description computed from the depth cue and bag them into multi-view codebooks. During the later classification step a multi-class support vector machine with a RBF- 2 kernel combines the descriptions at kernel level. In order to perform action detection from the videos, a sliding window approach is utilized. On the other hand, we extract accelerations, rotation angles, and jerk features from the inertial data collected by the wearable placed on the user’s dominant wrist. During gesture spotting, a dynamic time warping is applied and the aligning costs to a set of pre-selected gesture sub-classes are thresholded to determine possible detections. The outputs of the two modules are combined in a late-fusion fashion. The system is validated in a real-case scenario with elderly from an elder home. Learning-based fusion results improve the ones from the single modalities, demonstrating the success of such multimodal approach.
Keywords: Multimodal activity detection; Computer vision; Inertial sensors; Dense trajectories; Dynamic time warping; Assistive technology
|
|
|
Jun Wan, Sergio Escalera, Francisco Perales, & Josef Kittler. (2018). Articulated Motion and Deformable Objects. PR - Pattern Recognition, 79, 55–64.
Abstract: This guest editorial introduces the twenty two papers accepted for this Special Issue on Articulated Motion and Deformable Objects (AMDO). They are grouped into four main categories within the field of AMDO: human motion analysis (action/gesture), human pose estimation, deformable shape segmentation, and face analysis. For each of the four topics, a survey of the recent developments in the field is presented. The accepted papers are briefly introduced in the context of this survey. They contribute novel methods, algorithms with improved performance as measured on benchmarking datasets, as well as two new datasets for hand action detection and human posture analysis. The special issue should be of high relevance to the reader interested in AMDO recognition and promote future research directions in the field.
|
|
|
Razieh Rastgoo, Kourosh Kiani, & Sergio Escalera. (2018). Multi-Modal Deep Hand Sign Language Recognition in Still Images Using Restricted Boltzmann Machine. ENTROPY - Entropy, 20(11), 809.
Abstract: In this paper, a deep learning approach, Restricted Boltzmann Machine (RBM), is used to perform automatic hand sign language recognition from visual data. We evaluate how RBM, as a deep generative model, is capable of generating the distribution of the input data for an enhanced recognition of unseen data. Two modalities, RGB and Depth, are considered in the model input in three forms: original image, cropped image, and noisy cropped image. Five crops of the input image are used and the hand of these cropped images are detected using Convolutional Neural Network (CNN). After that, three types of the detected hand images are generated for each modality and input to RBMs. The outputs of the RBMs for two modalities are fused in another RBM in order to recognize the output sign label of the input image. The proposed multi-modal model is trained on all and part of the American alphabet and digits of four publicly available datasets. We also evaluate the robustness of the proposal against noise. Experimental results show that the proposed multi-modal model, using crops and the RBM fusing methodology, achieves state-of-the-art results on Massey University Gesture Dataset 2012, American Sign Language (ASL). and Fingerspelling Dataset from the University of Surrey’s Center for Vision, Speech and Signal Processing, NYU, and ASL Fingerspelling A datasets.
Keywords: hand sign language; deep learning; restricted Boltzmann machine (RBM); multi-modal; profoundly deaf; noisy image
|
|
|
Sergio Escalera, Markus Weimer, Mikhail Burtsev, Valentin Malykh, Varvara Logacheva, Ryan Lowe, et al. (2018). Introduction to NIPS 2017 Competition Track. In Sergio Escalera, & Markus Weimer (Eds.), The NIPS ’17 Competition: Building Intelligent Systems (pp. 1–23). Springer.
Abstract: Competitions have become a popular tool in the data science community to solve hard problems, assess the state of the art and spur new research directions. Companies like Kaggle and open source platforms like Codalab connect people with data and a data science problem to those with the skills and means to solve it. Hence, the question arises: What, if anything, could NIPS add to this rich ecosystem?
In 2017, we embarked to find out. We attracted 23 potential competitions, of which we selected five to be NIPS 2017 competitions. Our final selection features competitions advancing the state of the art in other sciences such as “Classifying Clinically Actionable Genetic Mutations” and “Learning to Run”. Others, like “The Conversational Intelligence Challenge” and “Adversarial Attacks and Defences” generated new data sets that we expect to impact the progress in their respective communities for years to come. And “Human-Computer Question Answering Competition” showed us just how far we as a field have come in ability and efficiency since the break-through performance of Watson in Jeopardy. Two additional competitions, DeepArt and AI XPRIZE Milestions, were also associated to the NIPS 2017 competition track, whose results are also presented within this chapter.
|
|
|
Ciprian Corneanu, Meysam Madadi, & Sergio Escalera. (2018). Deep Structure Inference Network for Facial Action Unit Recognition. In 15th European Conference on Computer Vision (Vol. 11216, pp. 309–324). LNCS.
Abstract: Facial expressions are combinations of basic components called Action Units (AU). Recognizing AUs is key for general facial expression analysis. Recently, efforts in automatic AU recognition have been dedicated to learning combinations of local features and to exploiting correlations between AUs. We propose a deep neural architecture that tackles both problems by combining learned local and global features in its initial stages and replicating a message passing algorithm between classes similar to a graphical model inference approach in later stages. We show that by training the model end-to-end with increased supervision we improve state-of-the-art by 5.3% and 8.2% performance on BP4D and DISFA datasets, respectively.
Keywords: Computer Vision; Machine Learning; Deep Learning; Facial Expression Analysis; Facial Action Units; Structure Inference
|
|
|
Mohamed Ilyes Lakhal, Albert Clapes, Sergio Escalera, Oswald Lanz, & Andrea Cavallaro. (2018). Residual Stacked RNNs for Action Recognition. In 9th International Workshop on Human Behavior Understanding (pp. 534–548).
Abstract: Action recognition pipelines that use Recurrent Neural Networks (RNN) are currently 5–10% less accurate than Convolutional Neural Networks (CNN). While most works that use RNNs employ a 2D CNN on each frame to extract descriptors for action recognition, we extract spatiotemporal features from a 3D CNN and then learn the temporal relationship of these descriptors through a stacked residual recurrent neural network (Res-RNN). We introduce for the first time residual learning to counter the degradation problem in multi-layer RNNs, which have been successful for temporal aggregation in two-stream action recognition pipelines. Finally, we use a late fusion strategy to combine RGB and optical flow data of the two-stream Res-RNN. Experimental results show that the proposed pipeline achieves competitive results on UCF-101 and state of-the-art results for RNN-like architectures on the challenging HMDB-51 dataset.
Keywords: Action recognition; Deep residual learning; Two-stream RNN
|
|
|
Cristina Palmero, Javier Selva, Mohammad Ali Bagheri, & Sergio Escalera. (2018). Recurrent CNN for 3D Gaze Estimation using Appearance and Shape Cues. In 29th British Machine Vision Conference.
Abstract: Gaze behavior is an important non-verbal cue in social signal processing and humancomputer interaction. In this paper, we tackle the problem of person- and head poseindependent 3D gaze estimation from remote cameras, using a multi-modal recurrent convolutional neural network (CNN). We propose to combine face, eyes region, and face landmarks as individual streams in a CNN to estimate gaze in still images. Then, we exploit the dynamic nature of gaze by feeding the learned features of all the frames in a sequence to a many-to-one recurrent module that predicts the 3D gaze vector of the last frame. Our multi-modal static solution is evaluated on a wide range of head poses and gaze directions, achieving a significant improvement of 14.6% over the state of the art on
EYEDIAP dataset, further improved by 4% when the temporal modality is included.
|
|
|
Reza Azad, Maryam Asadi-Aghbolaghi, Shohreh Kasaei, & Sergio Escalera. (2019). Dynamic 3D Hand Gesture Recognition by Learning Weighted Depth Motion Maps. TCSVT - IEEE Transactions on Circuits and Systems for Video Technology, 29(6), 1729–1740.
Abstract: Hand gesture recognition from sequences of depth maps is a challenging computer vision task because of the low inter-class and high intra-class variability, different execution rates of each gesture, and the high articulated nature of human hand. In this paper, a multilevel temporal sampling (MTS) method is first proposed that is based on the motion energy of key-frames of depth sequences. As a result, long, middle, and short sequences are generated that contain the relevant gesture information. The MTS results in increasing the intra-class similarity while raising the inter-class dissimilarities. The weighted depth motion map (WDMM) is then proposed to extract the spatio-temporal information from generated summarized sequences by an accumulated weighted absolute difference of consecutive frames. The histogram of gradient (HOG) and local binary pattern (LBP) are exploited to extract features from WDMM. The obtained results define the current state-of-the-art on three public benchmark datasets of: MSR Gesture 3D, SKIG, and MSR Action 3D, for 3D hand gesture recognition. We also achieve competitive results on NTU action dataset.
Keywords: Hand gesture recognition; Multilevel temporal sampling; Weighted depth motion map; Spatio-temporal description; VLAD encoding
|
|