|
Gemma Sanchez, Josep Llados, & Enric Marti. (1997). Segmentation and analysis of linial texture in plans. In Actes de la conférence Artificielle et Complexité.. Paris.
Abstract: The problem of texture segmentation and interpretation is one of the main concerns in the field of document analysis. Graphical documents often contain areas characterized by a structural texture whose recognition allows both the document understanding, and its storage in a more compact way. In this work, we focus on structural linial textures of regular repetition contained in plan documents. Starting from an atributed graph which represents the vectorized input image, we develop a method to segment textured areas and recognize their placement rules. We wish to emphasize that the searched textures do not follow a predefined pattern. Minimal closed loops of the input graph are computed, and then hierarchically clustered. In this hierarchical clustering, a distance function between two closed loops is defined in terms of their areas difference and boundary resemblance computed by a string matching procedure. Finally it is noted that, when the texture consists of isolated primitive elements, the same method can be used after computing a Voronoi Tesselation of the input graph.
Keywords: Structural Texture, Voronoi, Hierarchical Clustering, String Matching.
|
|
|
Ernest Valveny, & Enric Marti. (2001). Learning of structural descriptions of graphic symbols using deformable template matching. In Proc. Sixth Int Document Analysis and Recognition Conf (pp. 455–459).
Abstract: Accurate symbol recognition in graphic documents needs an accurate representation of the symbols to be recognized. If structural approaches are used for recognition, symbols have to be described in terms of their shape, using structural relationships among extracted features. Unlike statistical pattern recognition, in structural methods, symbols are usually manually defined from expertise knowledge, and not automatically infered from sample images. In this work we explain one approach to learn from examples a representative structural description of a symbol, thus providing better information about shape variability. The description of a symbol is based on a probabilistic model. It consists of a set of lines described by the mean and the variance of line parameters, respectively providing information about the model of the symbol, and its shape variability. The representation of each image in the sample set as a set of lines is achieved using deformable template matching.
|
|
|
Ernest Valveny, & Enric Marti. (2000). Deformable Template Matching within a Bayesian Framework for Hand-Written Graphic Symbol Recognition. Graphics Recognition Recent Advances, 1941, 193–208.
Abstract: We describe a method for hand-drawn symbol recognition based on deformable template matching able to handle uncertainty and imprecision inherent to hand-drawing. Symbols are represented as a set of straight lines and their deformations as geometric transformations of these lines. Matching, however, is done over the original binary image to avoid loss of information during line detection. It is defined as an energy minimization problem, using a Bayesian framework which allows to combine fidelity to ideal shape of the symbol and flexibility to modify the symbol in order to get the best fit to the binary input image. Prior to matching, we find the best global transformation of the symbol to start the recognition process, based on the distance between symbol lines and image lines. We have applied this method to the recognition of dimensions and symbols in architectural floor plans and we show its flexibility to recognize distorted symbols.
|
|
|
Ernest Valveny, & Enric Marti. (2000). Hand-drawn symbol recognition in graphic documents using deformable template matching and a Bayesian framework. In Proc. 15th Int Pattern Recognition Conf (Vol. 2, pp. 239–242).
Abstract: Hand-drawn symbols can take many different and distorted shapes from their ideal representation. Then, very flexible methods are needed to be able to handle unconstrained drawings. We propose here to extend our previous work in hand-drawn symbol recognition based on a Bayesian framework and deformable template matching. This approach gets flexibility enough to fit distorted shapes in the drawing while keeping fidelity to the ideal shape of the symbol. In this work, we define the similarity measure between an image and a symbol based on the distance from every pixel in the image to the lines in the symbol. Matching is carried out using an implementation of the EM algorithm. Thus, we can improve recognition rates and computation time with respect to our previous formulation based on a simulated annealing algorithm.
|
|
|
Ernest Valveny, & Enric Marti. (1999). Application of deformable template matching to symbol recognition in hand-written architectural draw. In Proceedings of the Fifth International Conference on. Bangalore (India).
Abstract: We propose to use deformable template matching as a new approach to recognize characters and lineal symbols in hand-written line drawings, instead of traditional methods based on vectorization and feature extraction. Bayesian formulation of the deformable template matching allows combining fidelity to the ideal shape of the symbol with maximum flexibility to get the best fit to the input image. Lineal nature of symbols can be exploited to define a suitable representation of models and the set of deformations to be applied to them. Matching, however, is done over the original binary image to avoid losing relevant features during vectorization. We have applied this method to hand-written architectural drawings and experimental results demonstrate that symbols with high distortions from ideal shape can be accurately identified.
|
|
|
Ernest Valveny, & Enric Marti. (1999). Recognition of lineal symbols in hand-written drawings using deformable template matching. In Proceedings of the VIII Symposium Nacional de Reconocimiento de Formas y Análisis de Imágenes.
|
|
|
Ernest Valveny, & Enric Marti. (1997). Dimensions analysis in hand-drawn architectural drawings. In (SNRFAI’97) 7th Spanish National Symposium on Pattern Recognition and Image Analysis (pp. 90–91). CVC-UAB.
|
|
|
Josep Llados, Enric Marti, & Juan J.Villanueva. (2001). Symbol recognition by error-tolerant subgraph matching between region adjacency graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(10), 1137–1143.
Abstract: The recognition of symbols in graphic documents is an intensive research activity in the community of pattern recognition and document analysis. A key issue in the interpretation of maps, engineering drawings, diagrams, etc. is the recognition of domain dependent symbols according to a symbol database. In this work we first review the most outstanding symbol recognition methods from two different points of view: application domains and pattern recognition methods. In the second part of the paper, open and unaddressed problems involved in symbol recognition are described, analyzing their current state of art and discussing future research challenges. Thus, issues such as symbol representation, matching, segmentation, learning, scalability of recognition methods and performance evaluation are addressed in this work. Finally, we discuss the perspectives of symbol recognition concerning to new paradigms such as user interfaces in handheld computers or document database and WWW indexing by graphical content.
|
|
|
Ernest Valveny, Ricardo Toledo, Ramon Baldrich, & Enric Marti. (2002). Combining recognition-based in segmentation-based approaches for graphic symol recognition using deformable template matching. In Proceeding of the Second IASTED International Conference Visualization, Imaging and Image Proceesing VIIP 2002 (502–507).
|
|
|
A. Martinez, & Jordi Vitria. (1997). Using Low-Dimensional Spaces for Face Recognition..
|
|
|
J.R. Serra, A. Martinez, Jordi Vitria, & J.B. Subirana. (1997). Iconic Representation to Image Retrieval..
|
|
|
Albert Clapes. (2019). Learning to recognize human actions: from hand-crafted to deep-learning based visual representations (Sergio Escalera, Ed.). Ph.D. thesis, Ediciones Graficas Rey, .
Abstract: Action recognition is a very challenging and important problem in computer vision. Researchers working on this field aspire to provide computers with the abil ity to visually perceive human actions – that is, to observe, interpret, and under stand human-related events that occur in the physical environment merely from visual data. The applications of this technology are numerous: human-machine interaction, e-health, monitoring/surveillance, and content-based video retrieval, among others. Hand-crafted methods dominated the field until the apparition of the first successful deep learning-based action recognition works. Although ear lier deep-based methods underperformed with respect to hand-crafted approaches, these slowly but steadily improved to become state-of-the-art, eventually achieving better results than hand-crafted ones. Still, hand-crafted approaches can be advan tageous in certain scenarios, specially when not enough data is available to train very large deep models or simply to be combined with deep-based methods to fur ther boost the performance. Hence, showing how hand-crafted features can provide extra knowledge the deep networks are notable to easily learn about human actions.
This Thesis concurs in time with this change of paradigm and, hence, reflects it into two distinguished parts. In the first part, we focus on improving current suc cessful hand-crafted approaches for action recognition and we do so from three dif ferent perspectives. Using the dense trajectories framework as a backbone: first, we explore the use of multi-modal and multi-view input
data to enrich the trajectory de scriptors. Second, we focus on the classification part of action recognition pipelines and propose an ensemble learning approach, where each classifier leams from a different set of local spatiotemporal features to then combine their outputs following an strategy based on the Dempster-Shaffer Theory. And third, we propose a novel hand-crafted feature extraction method that constructs a rnid-level feature descrip tion to better modellong-term spatiotemporal dynarnics within action videos. Moving to the second part of the Thesis, we start with a comprehensive study of the current deep-learning based action recognition methods. We review both fun damental and cutting edge methodologies reported during the last few years and introduce a taxonomy of deep-leaming methods dedicated to action recognition. In particular, we analyze and discuss how these handle
the temporal dimension of data. Last but not least, we propose a residual recurrent network for action recogni tion that naturally integrates all our previous findings in a powerful and prornising framework.
|
|
|
Daniel Sanchez, J.C.Ortega, & Miguel Angel Bautista. (2013). Human Body Segmentation with Multi-limb Error-Correcting Output Codes Detection and Graph Cuts Optimization. In 6th Iberian Conference on Pattern Recognition and Image Analysis (Vol. 7887, pp. 50–58). LNCS. Springer Berlin Heidelberg.
Abstract: Human body segmentation is a hard task because of the high variability in appearance produced by changes in the point of view, lighting conditions, and number of articulations of the human body. In this paper, we propose a two-stage approach for the segmentation of the human body. In a first step, a set of human limbs are described, normalized to be rotation invariant, and trained using cascade of classifiers to be split in a tree structure way. Once the tree structure is trained, it is included in a ternary Error-Correcting Output Codes (ECOC) framework. This first classification step is applied in a windowing way on a new test image, defining a body-like probability map, which is used as an initialization of a GMM color modelling and binary Graph Cuts optimization procedure. The proposed methodology is tested in a novel limb-labelled data set. Results show performance improvements of the novel approach in comparison to classical cascade of classifiers and human detector-based Graph Cuts segmentation approaches.
Keywords: Human Body Segmentation; Error-Correcting Output Codes; Cascade of Classifiers; Graph Cuts
|
|
|
Victor Ponce. (2016). Evolutionary Bags of Space-Time Features for Human Analysis (Sergio Escalera, Xavier Baro, & Hugo Jair Escalante, Eds.). Ph.D. thesis, Ediciones Graficas Rey, .
Abstract: The representation (or feature) learning has been an emerging concept in the last years, since it collects a set of techniques that are present in any theoretical or practical methodology referring to artificial intelligence. In computer vision, a very common representation has adopted the form of the well-known Bag of Visual Words. This representation appears implicitly in most approaches where images are described, and is also present in a huge number of areas and domains: image content retrieval, pedestrian detection, human-computer interaction, surveillance, e-health, and social computing, amongst others. The early stages of this dissertation provide an approach for learning visual representations inside evolutionary algorithms, which consists of evolving weighting schemes to improve the BoVW representations for the task of recognizing categories of videos and images. Thus, we demonstrate the applicability of the most common weighting schemes, which are often used in text mining but are less frequently found in computer vision tasks. Beyond learning these visual representations, we provide an approach based on fusion strategies for learning spatiotemporal representations, from multimodal data obtained by depth sensors. Besides, we specially aim at the evolutionary and dynamic modelling, where the temporal factor is present in the nature of the data, such as video sequences of gestures and actions. Indeed, we explore the effects of probabilistic modelling for those approaches based on dynamic programming, so as to handle the temporal deformation and variance amongst video sequences of different categories. Finally, we integrate dynamic programming and generative models into an evolutionary computation framework, with the aim of learning Bags of SubGestures (BoSG) representations and hence to improve the generalization capability of standard gesture recognition approaches. The results obtained in the experimentation demonstrate, first, that evolutionary algorithms are useful for improving the representation of BoVW approaches in several datasets for recognizing categories in still images and video sequences. On the other hand, our experimentation reveals that both, the use of dynamic programming and generative models to align video sequences, and the representations obtained from applying fusion strategies in multimodal data, entail an enhancement on the performance when recognizing some gesture categories. Furthermore, the combination of evolutionary algorithms with models based on dynamic programming and generative approaches results, when aiming at the classification of video categories on large video datasets, in a considerable improvement over standard gesture and action recognition approaches. Finally, we demonstrate the applications of these representations in several domains for human analysis: classification of images where humans may be present, action and gesture recognition for general applications, and in particular for conversational settings within the field of restorative justice
Keywords: Computer algorithms; Digital image processing; Digital video; Analysis of variance; Dynamic programming; Evolutionary computation; Gesture
|
|
|
Meysam Madadi. (2017). Human Segmentation, Pose Estimation and Applications (Sergio Escalera, & Jordi Gonzalez, Eds.). Ph.D. thesis, Ediciones Graficas Rey, .
Abstract: Automatic analyzing humans in photographs or videos has great potential applications in computer vision, including medical diagnosis, sports, entertainment, movie editing and surveillance, just to name a few. Body, face and hand are the most studied components of humans. Body has many variabilities in shape and clothing along with high degrees of freedom in pose. Face has many muscles causing many visible deformity, beside variable shape and hair style. Hand is a small object, moving fast and has high degrees of freedom. Adding human characteristics to all aforementioned variabilities makes human analysis quite a challenging task.
In this thesis, we developed human segmentation in different modalities. In a first scenario, we segmented human body and hand in depth images using example-based shape warping. We developed a shape descriptor based on shape context and class probabilities of shape regions to extract nearest neighbors. We then considered rigid affine alignment vs. nonrigid iterative shape warping. In a second scenario, we segmented face in RGB images using convolutional neural networks (CNN). We modeled conditional random field with recurrent neural networks. In our model pair-wise kernels are not fixed and learned during training. We trained the network end-to-end using adversarial networks which improved hair segmentation by a high margin.
We also worked on 3D hand pose estimation in depth images. In a generative approach, we fitted a finger model separately for each finger based on our example-based rigid hand segmentation. We minimized an energy function based on overlapping area, depth discrepancy and finger collisions. We also applied linear models in joint trajectory space to refine occluded joints based on visible joints error and invisible joints trajectory smoothness. In a CNN-based approach, we developed a tree-structure network to train specific features for each finger and fused them for global pose consistency. We also formulated physical and appearance constraints as loss functions.
Finally, we developed a number of applications consisting of human soft biometrics measurement and garment retexturing. We also generated some datasets in this thesis consisting of human segmentation, synthetic hand pose, garment retexturing and Italian gestures.
|
|