|   | 
Details
   web
Records
Author Saad Minhas; Zeba Khanam; Shoaib Ehsan; Klaus McDonald Maier; Aura Hernandez-Sabate
Title Weather Classification by Utilizing Synthetic Data Type Journal Article
Year 2022 Publication Sensors Abbreviated Journal SENS
Volume 22 Issue 9 Pages 3193
Keywords Weather classification; synthetic data; dataset; autonomous car; computer vision; advanced driver assistance systems; deep learning; intelligent transportation systems
Abstract Weather prediction from real-world images can be termed a complex task when targeting classification using neural networks. Moreover, the number of images throughout the available datasets can contain a huge amount of variance when comparing locations with the weather those images are representing. In this article, the capabilities of a custom built driver simulator are explored specifically to simulate a wide range of weather conditions. Moreover, the performance of a new synthetic dataset generated by the above simulator is also assessed. The results indicate that the use of synthetic datasets in conjunction with real-world datasets can increase the training efficiency of the CNNs by as much as 74%. The article paves a way forward to tackle the persistent problem of bias in vision-based datasets.
Address 21 April 2022
Corporate Author Thesis
Publisher MDPI Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) IAM; 600.139; 600.159; 600.166; 600.145; Approved no
Call Number Admin @ si @ MKE2022 Serial 3761
Permanent link to this record
 

 
Author Wenjuan Gong; Xuena Zhang; Jordi Gonzalez; Andrews Sobral; Thierry Bouwmans; Changhe Tu; El-hadi Zahzah
Title Human Pose Estimation from Monocular Images: A Comprehensive Survey Type Journal Article
Year 2016 Publication Sensors Abbreviated Journal SENS
Volume 16 Issue 12 Pages 1966
Keywords human pose estimation; human bodymodels; generativemethods; discriminativemethods; top-down methods; bottom-up methods
Abstract Human pose estimation refers to the estimation of the location of body parts and how they are connected in an image. Human pose estimation from monocular images has wide applications (e.g., image indexing). Several surveys on human pose estimation can be found in the literature, but they focus on a certain category; for example, model-based approaches or human motion analysis, etc. As far as we know, an overall review of this problem domain has yet to be provided. Furthermore, recent advancements based on deep learning have brought novel algorithms for this problem. In this paper, a comprehensive survey of human pose estimation from monocular images is carried out including milestone works and recent advancements. Based on one standard pipeline for the solution of computer vision problems, this survey splits the problem into several modules: feature extraction and description, human body models, and modeling
methods. Problem modeling methods are approached based on two means of categorization in this survey. One way to categorize includes top-down and bottom-up methods, and another way includes generative and discriminative methods. Considering the fact that one direct application of human pose estimation is to provide initialization for automatic video surveillance, there are additional sections for motion-related methods in all modules: motion features, motion models, and motion-based methods. Finally, the paper also collects 26 publicly available data sets for validation and provides error measurement methods that are frequently used.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) ISE; 600.098; 600.119 Approved no
Call Number Admin @ si @ GZG2016 Serial 2933
Permanent link to this record
 

 
Author Gabriel Villalonga; Joost Van de Weijer; Antonio Lopez
Title Recognizing new classes with synthetic data in the loop: application to traffic sign recognition Type Journal Article
Year 2020 Publication Sensors Abbreviated Journal SENS
Volume 20 Issue 3 Pages 583
Keywords
Abstract On-board vision systems may need to increase the number of classes that can be recognized in a relatively short period. For instance, a traffic sign recognition system may suddenly be required to recognize new signs. Since collecting and annotating samples of such new classes may need more time than we wish, especially for uncommon signs, we propose a method to generate these samples by combining synthetic images and Generative Adversarial Network (GAN) technology. In particular, the GAN is trained on synthetic and real-world samples from known classes to perform synthetic-to-real domain adaptation, but applied to synthetic samples of the new classes. Using the Tsinghua dataset with a synthetic counterpart, SYNTHIA-TS, we have run an extensive set of experiments. The results show that the proposed method is indeed effective, provided that we use a proper Convolutional Neural Network (CNN) to perform the traffic sign recognition (classification) task as well as a proper GAN to transform the synthetic images. Here, a ResNet101-based classifier and domain adaptation based on CycleGAN performed extremely well for a ratio∼ 1/4 for new/known classes; even for more challenging ratios such as∼ 4/1, the results are also very positive.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) LAMP; ADAS; 600.118; 600.120 Approved no
Call Number Admin @ si @ VWL2020 Serial 3405
Permanent link to this record
 

 
Author Sergio Escalera; Xavier Baro; Jordi Vitria; Petia Radeva; Bogdan Raducanu
Title Social Network Extraction and Analysis Based on Multimodal Dyadic Interaction Type Journal Article
Year 2012 Publication Sensors Abbreviated Journal SENS
Volume 12 Issue 2 Pages 1702-1719
Keywords
Abstract IF=1.77 (2010)
Social interactions are a very important component in peopleís lives. Social network analysis has become a common technique used to model and quantify the properties of social interactions. In this paper, we propose an integrated framework to explore the characteristics of a social network extracted from multimodal dyadic interactions. For our study, we used a set of videos belonging to New York Timesí Blogging Heads opinion blog.
The Social Network is represented as an oriented graph, whose directed links are determined by the Influence Model. The linksí weights are a measure of the ìinfluenceî a person has over the other. The states of the Influence Model encode automatically extracted audio/visual features from our videos using state-of-the art algorithms. Our results are reported in terms of accuracy of audio/visual data fusion for speaker segmentation and centrality measures used to characterize the extracted social network.
Address
Corporate Author Thesis
Publisher Molecular Diversity Preservation International Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) MILAB; OR;HuPBA;MV Approved no
Call Number Admin @ si @ EBV2012 Serial 1885
Permanent link to this record
 

 
Author Rafael E. Rivadeneira; Angel Sappa; Boris X. Vintimilla; Riad I. Hammoud
Title A Novel Domain Transfer-Based Approach for Unsupervised Thermal Image Super-Resolution Type Journal Article
Year 2022 Publication Sensors Abbreviated Journal SENS
Volume 22 Issue 6 Pages 2254
Keywords Thermal image super-resolution; unsupervised super-resolution; thermal images; attention module; semiregistered thermal images
Abstract This paper presents a transfer domain strategy to tackle the limitations of low-resolution thermal sensors and generate higher-resolution images of reasonable quality. The proposed technique employs a CycleGAN architecture and uses a ResNet as an encoder in the generator along with an attention module and a novel loss function. The network is trained on a multi-resolution thermal image dataset acquired with three different thermal sensors. Results report better performance benchmarking results on the 2nd CVPR-PBVS-2021 thermal image super-resolution challenge than state-of-the-art methods. The code of this work is available online.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) MSIAU; Approved no
Call Number Admin @ si @ RSV2022b Serial 3688
Permanent link to this record
 

 
Author Cristhian A. Aguilera-Carrasco; C. Aguilera; Angel Sappa
Title Melamine Faced Panels Defect Classification beyond the Visible Spectrum Type Journal Article
Year 2018 Publication Sensors Abbreviated Journal SENS
Volume 18 Issue 11 Pages 1-10
Keywords industrial application; infrared; machine learning
Abstract In this work, we explore the use of images from different spectral bands to classify defects in melamine faced panels, which could appear through the production process. Through experimental evaluation, we evaluate the use of images from the visible (VS), near-infrared (NIR), and long wavelength infrared (LWIR), to classify the defects using a feature descriptor learning approach together with a support vector machine classifier. Two descriptors were evaluated, Extended Local Binary Patterns (E-LBP) and SURF using a Bag of Words (BoW) representation. The evaluation was carried on with an image set obtained during this work, which contained five different defect categories that currently occurs in the industry. Results show that using images from beyond the visual spectrum helps to improve classification performance in contrast with a single visible spectrum solution.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) MSIAU; 600.122 Approved no
Call Number Admin @ si @ AAS2018 Serial 3191
Permanent link to this record
 

 
Author Cristhian A. Aguilera-Carrasco; Cristhian Aguilera; Cristobal A. Navarro; Angel Sappa
Title Fast CNN Stereo Depth Estimation through Embedded GPU Devices Type Journal Article
Year 2020 Publication Sensors Abbreviated Journal SENS
Volume 20 Issue 11 Pages 3249
Keywords stereo matching; deep learning; embedded GPU
Abstract Current CNN-based stereo depth estimation models can barely run under real-time constraints on embedded graphic processing unit (GPU) devices. Moreover, state-of-the-art evaluations usually do not consider model optimization techniques, being that it is unknown what is the current potential on embedded GPU devices. In this work, we evaluate two state-of-the-art models on three different embedded GPU devices, with and without optimization methods, presenting performance results that illustrate the actual capabilities of embedded GPU devices for stereo depth estimation. More importantly, based on our evaluation, we propose the use of a U-Net like architecture for postprocessing the cost-volume, instead of a typical sequence of 3D convolutions, drastically augmenting the runtime speed of current models. In our experiments, we achieve real-time inference speed, in the range of 5–32 ms, for 1216 × 368 input stereo images on the Jetson TX2, Jetson Xavier, and Jetson Nano embedded devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) MSIAU; 600.122 Approved no
Call Number Admin @ si @ AAN2020 Serial 3428
Permanent link to this record
 

 
Author Angel Morera; Angel Sanchez; A. Belen Moreno; Angel Sappa; Jose F. Velez
Title SSD vs. YOLO for Detection of Outdoor Urban Advertising Panels under Multiple Variabilities Type Journal Article
Year 2020 Publication Sensors Abbreviated Journal SENS
Volume 20 Issue 16 Pages 4587
Keywords
Abstract This work compares Single Shot MultiBox Detector (SSD) and You Only Look Once (YOLO) deep neural networks for the outdoor advertisement panel detection problem by handling multiple and combined variabilities in the scenes. Publicity panel detection in images offers important advantages both in the real world as well as in the virtual one. For example, applications like Google Street View can be used for Internet publicity and when detecting these ads panels in images, it could be possible to replace the publicity appearing inside the panels by another from a funding company. In our experiments, both SSD and YOLO detectors have produced acceptable results under variable sizes of panels, illumination conditions, viewing perspectives, partial occlusion of panels, complex background and multiple panels in scenes. Due to the difficulty of finding annotated images for the considered problem, we created our own dataset for conducting the experiments. The major strength of the SSD model was the almost elimination of False Positive (FP) cases, situation that is preferable when the publicity contained inside the panel is analyzed after detecting them. On the other side, YOLO produced better panel localization results detecting a higher number of True Positive (TP) panels with a higher accuracy. Finally, a comparison of the two analyzed object detection models with different types of semantic segmentation networks and using the same evaluation metrics is also included.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) MSIAU; 600.130; 601.349; 600.122 Approved no
Call Number Admin @ si @ MSM2020 Serial 3452
Permanent link to this record
 

 
Author Cesar Isaza; Joaquin Salas; Bogdan Raducanu
Title Evaluation of Intrinsic Image Algorithms to Detect the Shadows Cast by Static Objects Outdoors Type Journal Article
Year 2012 Publication Sensors Abbreviated Journal SENS
Volume 12 Issue 10 Pages 13333-13348
Keywords
Abstract In some automatic scene analysis applications, the presence of shadows becomes a nuisance that is necessary to deal with. As a consequence, a preliminary stage in many computer vision algorithms is to attenuate their effect. In this paper, we focus our attention on the detection of shadows cast by static objects outdoors, as the scene is viewed for extended periods of time (days, weeks) from a fixed camera and considering daylight intervals where the main source of light is the sun. In this context, we report two contributions. First, we introduce the use of synthetic images for which ground truth can be generated automatically, avoiding the tedious effort of manual annotation. Secondly, we report a novel application of the intrinsic image concept to the automatic detection of shadows cast by static objects in outdoors. We make both a quantitative and a qualitative evaluation of several algorithms based on this image representation. For the quantitative evaluation, we used the synthetic data set, while for the qualitative evaluation we used both data sets. Our experimental results show that the evaluated methods can partially solve the problem of shadow detection.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (up) OR;MV Approved no
Call Number Admin @ si @ ISR2012b Serial 2173
Permanent link to this record