|   | 
Details
   web
Records
Author Alejandro Gonzalez Alzate; Zhijie Fang; Yainuvis Socarras; Joan Serrat; David Vazquez; Jiaolong Xu; Antonio Lopez
Title Pedestrian Detection at Day/Night Time with Visible and FIR Cameras: A Comparison Type Journal Article
Year 2016 Publication Sensors Abbreviated Journal SENS
Volume 16 Issue 6 Pages 820
Keywords (up) Pedestrian Detection; FIR
Abstract Despite all the significant advances in pedestrian detection brought by computer vision for driving assistance, it is still a challenging problem. One reason is the extremely varying lighting conditions under which such a detector should operate, namely day and night time. Recent research has shown that the combination of visible and non-visible imaging modalities may increase detection accuracy, where the infrared spectrum plays a critical role. The goal of this paper is to assess the accuracy gain of different pedestrian models (holistic, part-based, patch-based) when training with images in the far infrared spectrum. Specifically, we want to compare detection accuracy on test images recorded at day and nighttime if trained (and tested) using (a) plain color images, (b) just infrared images and (c) both of them. In order to obtain results for the last item we propose an early fusion approach to combine features from both modalities. We base the evaluation on a new dataset we have built for this purpose as well as on the publicly available KAIST multispectral dataset.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1424-8220 ISBN Medium
Area Expedition Conference
Notes ADAS; 600.085; 600.076; 600.082; 601.281 Approved no
Call Number ADAS @ adas @ GFS2016 Serial 2754
Permanent link to this record
 

 
Author Zhijie Fang; David Vazquez; Antonio Lopez
Title On-Board Detection of Pedestrian Intentions Type Journal Article
Year 2017 Publication Sensors Abbreviated Journal SENS
Volume 17 Issue 10 Pages 2193
Keywords (up) pedestrian intention; ADAS; self-driving
Abstract Avoiding vehicle-to-pedestrian crashes is a critical requirement for nowadays advanced driver assistant systems (ADAS) and future self-driving vehicles. Accordingly, detecting pedestrians from raw sensor data has a history of more than 15 years of research, with vision playing a central role.
During the last years, deep learning has boosted the accuracy of image-based pedestrian detectors.
However, detection is just the first step towards answering the core question, namely is the vehicle going to crash with a pedestrian provided preventive actions are not taken? Therefore, knowing as soon as possible if a detected pedestrian has the intention of crossing the road ahead of the vehicle is
essential for performing safe and comfortable maneuvers that prevent a crash. However, compared to pedestrian detection, there is relatively little literature on detecting pedestrian intentions. This paper aims to contribute along this line by presenting a new vision-based approach which analyzes the
pose of a pedestrian along several frames to determine if he or she is going to enter the road or not. We present experiments showing 750 ms of anticipation for pedestrians crossing the road, which at a typical urban driving speed of 50 km/h can provide 15 additional meters (compared to a pure pedestrian detector) for vehicle automatic reactions or to warn the driver. Moreover, in contrast with state-of-the-art methods, our approach is monocular, neither requiring stereo nor optical flow information.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ADAS; 600.085; 600.076; 601.223; 600.116; 600.118 Approved no
Call Number Admin @ si @ FVL2017 Serial 2983
Permanent link to this record
 

 
Author Xavier Soria; Angel Sappa; Riad I. Hammoud
Title Wide-Band Color Imagery Restoration for RGB-NIR Single Sensor Images Type Journal Article
Year 2018 Publication Sensors Abbreviated Journal SENS
Volume 18 Issue 7 Pages 2059
Keywords (up) RGB-NIR sensor; multispectral imaging; deep learning; CNNs
Abstract Multi-spectral RGB-NIR sensors have become ubiquitous in recent years. These sensors allow the visible and near-infrared spectral bands of a given scene to be captured at the same time. With such cameras, the acquired imagery has a compromised RGB color representation due to near-infrared bands (700–1100 nm) cross-talking with the visible bands (400–700 nm).
This paper proposes two deep learning-based architectures to recover the full RGB color images, thus removing the NIR information from the visible bands. The proposed approaches directly restore the high-resolution RGB image by means of convolutional neural networks. They are evaluated with several outdoor images; both architectures reach a similar performance when evaluated in different
scenarios and using different similarity metrics. Both of them improve the state of the art approaches.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ADAS; MSIAU; 600.086; 600.130; 600.122; 600.118 Approved no
Call Number Admin @ si @ SSH2018 Serial 3145
Permanent link to this record
 

 
Author Antonio Hernandez; Miguel Reyes; Victor Ponce; Sergio Escalera
Title GrabCut-Based Human Segmentation in Video Sequences Type Journal Article
Year 2012 Publication Sensors Abbreviated Journal SENS
Volume 12 Issue 11 Pages 15376-15393
Keywords (up) segmentation; human pose recovery; GrabCut; GraphCut; Active Appearance Models; Conditional Random Field
Abstract In this paper, we present a fully-automatic Spatio-Temporal GrabCut human segmentation methodology that combines tracking and segmentation. GrabCut initialization is performed by a HOG-based subject detection, face detection, and skin color model. Spatial information is included by Mean Shift clustering whereas temporal coherence is considered by the historical of Gaussian Mixture Models. Moreover, full face and pose recovery is obtained by combining human segmentation with Active Appearance Models and Conditional Random Fields. Results over public datasets and in a new Human Limb dataset show a robust segmentation and recovery of both face and pose using the presented methodology.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HuPBA;MILAB Approved no
Call Number Admin @ si @ HRP2012 Serial 2147
Permanent link to this record
 

 
Author Mark Philip Philipsen; Jacob Velling Dueholm; Anders Jorgensen; Sergio Escalera; Thomas B. Moeslund
Title Organ Segmentation in Poultry Viscera Using RGB-D Type Journal Article
Year 2018 Publication Sensors Abbreviated Journal SENS
Volume 18 Issue 1 Pages 117
Keywords (up) semantic segmentation; RGB-D; random forest; conditional random field; 2D; 3D; CNN
Abstract We present a pattern recognition framework for semantic segmentation of visual structures, that is, multi-class labelling at pixel level, and apply it to the task of segmenting organs in the eviscerated viscera from slaughtered poultry in RGB-D images. This is a step towards replacing the current strenuous manual inspection at poultry processing plants. Features are extracted from feature maps such as activation maps from a convolutional neural network (CNN). A random forest classifier assigns class probabilities, which are further refined by utilizing context in a conditional random field. The presented method is compatible with both 2D and 3D features, which allows us to explore the value of adding 3D and CNN-derived features. The dataset consists of 604 RGB-D images showing 151 unique sets of eviscerated viscera from four different perspectives. A mean Jaccard index of 78.11% is achieved across the four classes of organs by using features derived from 2D, 3D and a CNN, compared to 74.28% using only basic 2D image features.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HUPBA; no proj Approved no
Call Number Admin @ si @ PVJ2018 Serial 3072
Permanent link to this record
 

 
Author Albert Ali Salah; E. Pauwels; R. Tavenard; Theo Gevers
Title T-Patterns Revisited: Mining for Temporal Patterns in Sensor Data Type Journal Article
Year 2010 Publication Sensors Abbreviated Journal SENS
Volume 10 Issue 8 Pages 7496-7513
Keywords (up) sensor networks; temporal pattern extraction; T-patterns; Lempel-Ziv; Gaussian mixture model; MERL motion data
Abstract The trend to use large amounts of simple sensors as opposed to a few complex sensors to monitor places and systems creates a need for temporal pattern mining algorithms to work on such data. The methods that try to discover re-usable and interpretable patterns in temporal event data have several shortcomings. We contrast several recent approaches to the problem, and extend the T-Pattern algorithm, which was previously applied for detection of sequential patterns in behavioural sciences. The temporal complexity of the T-pattern approach is prohibitive in the scenarios we consider. We remedy this with a statistical model to obtain a fast and robust algorithm to find patterns in temporal data. We test our algorithm on a recent database collected with passive infrared sensors with millions of events.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ALTRES;ISE Approved no
Call Number Admin @ si @ SPT2010 Serial 1845
Permanent link to this record
 

 
Author Cristhian A. Aguilera-Carrasco; Cristhian Aguilera; Cristobal A. Navarro; Angel Sappa
Title Fast CNN Stereo Depth Estimation through Embedded GPU Devices Type Journal Article
Year 2020 Publication Sensors Abbreviated Journal SENS
Volume 20 Issue 11 Pages 3249
Keywords (up) stereo matching; deep learning; embedded GPU
Abstract Current CNN-based stereo depth estimation models can barely run under real-time constraints on embedded graphic processing unit (GPU) devices. Moreover, state-of-the-art evaluations usually do not consider model optimization techniques, being that it is unknown what is the current potential on embedded GPU devices. In this work, we evaluate two state-of-the-art models on three different embedded GPU devices, with and without optimization methods, presenting performance results that illustrate the actual capabilities of embedded GPU devices for stereo depth estimation. More importantly, based on our evaluation, we propose the use of a U-Net like architecture for postprocessing the cost-volume, instead of a typical sequence of 3D convolutions, drastically augmenting the runtime speed of current models. In our experiments, we achieve real-time inference speed, in the range of 5–32 ms, for 1216 × 368 input stereo images on the Jetson TX2, Jetson Xavier, and Jetson Nano embedded devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MSIAU; 600.122 Approved no
Call Number Admin @ si @ AAN2020 Serial 3428
Permanent link to this record
 

 
Author Rafael E. Rivadeneira; Angel Sappa; Boris X. Vintimilla; Riad I. Hammoud
Title A Novel Domain Transfer-Based Approach for Unsupervised Thermal Image Super-Resolution Type Journal Article
Year 2022 Publication Sensors Abbreviated Journal SENS
Volume 22 Issue 6 Pages 2254
Keywords (up) Thermal image super-resolution; unsupervised super-resolution; thermal images; attention module; semiregistered thermal images
Abstract This paper presents a transfer domain strategy to tackle the limitations of low-resolution thermal sensors and generate higher-resolution images of reasonable quality. The proposed technique employs a CycleGAN architecture and uses a ResNet as an encoder in the generator along with an attention module and a novel loss function. The network is trained on a multi-resolution thermal image dataset acquired with three different thermal sensors. Results report better performance benchmarking results on the 2nd CVPR-PBVS-2021 thermal image super-resolution challenge than state-of-the-art methods. The code of this work is available online.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MSIAU; Approved no
Call Number Admin @ si @ RSV2022b Serial 3688
Permanent link to this record
 

 
Author Saad Minhas; Zeba Khanam; Shoaib Ehsan; Klaus McDonald Maier; Aura Hernandez-Sabate
Title Weather Classification by Utilizing Synthetic Data Type Journal Article
Year 2022 Publication Sensors Abbreviated Journal SENS
Volume 22 Issue 9 Pages 3193
Keywords (up) Weather classification; synthetic data; dataset; autonomous car; computer vision; advanced driver assistance systems; deep learning; intelligent transportation systems
Abstract Weather prediction from real-world images can be termed a complex task when targeting classification using neural networks. Moreover, the number of images throughout the available datasets can contain a huge amount of variance when comparing locations with the weather those images are representing. In this article, the capabilities of a custom built driver simulator are explored specifically to simulate a wide range of weather conditions. Moreover, the performance of a new synthetic dataset generated by the above simulator is also assessed. The results indicate that the use of synthetic datasets in conjunction with real-world datasets can increase the training efficiency of the CNNs by as much as 74%. The article paves a way forward to tackle the persistent problem of bias in vision-based datasets.
Address 21 April 2022
Corporate Author Thesis
Publisher MDPI Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes IAM; 600.139; 600.159; 600.166; 600.145; Approved no
Call Number Admin @ si @ MKE2022 Serial 3761
Permanent link to this record