toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ali Furkan Biten; Lluis Gomez; Dimosthenis Karatzas edit   pdf
url  doi
openurl 
  Title Let there be a clock on the beach: Reducing Object Hallucination in Image Captioning Type Conference Article
  Year 2022 Publication Winter Conference on Applications of Computer Vision Abbreviated Journal  
  Volume Issue (down) Pages 1381-1390  
  Keywords Measurement; Training; Visualization; Analytical models; Computer vision; Computational modeling; Training data  
  Abstract Explaining an image with missing or non-existent objects is known as object bias (hallucination) in image captioning. This behaviour is quite common in the state-of-the-art captioning models which is not desirable by humans. To decrease the object hallucination in captioning, we propose three simple yet efficient training augmentation method for sentences which requires no new training data or increase
in the model size. By extensive analysis, we show that the proposed methods can significantly diminish our models’ object bias on hallucination metrics. Moreover, we experimentally demonstrate that our methods decrease the dependency on the visual features. All of our code, configuration files and model weights are available online.
 
  Address Virtual; Waikoloa; Hawai; USA; January 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WACV  
  Notes DAG; 600.155; 302.105 Approved no  
  Call Number Admin @ si @ BGK2022 Serial 3662  
Permanent link to this record
 

 
Author Ali Furkan Biten; Andres Mafla; Lluis Gomez; Dimosthenis Karatzas edit   pdf
url  doi
openurl 
  Title Is An Image Worth Five Sentences? A New Look into Semantics for Image-Text Matching Type Conference Article
  Year 2022 Publication Winter Conference on Applications of Computer Vision Abbreviated Journal  
  Volume Issue (down) Pages 1391-1400  
  Keywords Measurement; Training; Integrated circuits; Annotations; Semantics; Training data; Semisupervised learning  
  Abstract The task of image-text matching aims to map representations from different modalities into a common joint visual-textual embedding. However, the most widely used datasets for this task, MSCOCO and Flickr30K, are actually image captioning datasets that offer a very limited set of relationships between images and sentences in their ground-truth annotations. This limited ground truth information forces us to use evaluation metrics based on binary relevance: given a sentence query we consider only one image as relevant. However, many other relevant images or captions may be present in the dataset. In this work, we propose two metrics that evaluate the degree of semantic relevance of retrieved items, independently of their annotated binary relevance. Additionally, we incorporate a novel strategy that uses an image captioning metric, CIDEr, to define a Semantic Adaptive Margin (SAM) to be optimized in a standard triplet loss. By incorporating our formulation to existing models, a large improvement is obtained in scenarios where available training data is limited. We also demonstrate that the performance on the annotated image-caption pairs is maintained while improving on other non-annotated relevant items when employing the full training set. The code for our new metric can be found at github. com/furkanbiten/ncsmetric and the model implementation at github. com/andrespmd/semanticadaptive_margin.  
  Address Virtual; Waikoloa; Hawai; USA; January 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WACV  
  Notes DAG; 600.155; 302.105; Approved no  
  Call Number Admin @ si @ BMG2022 Serial 3663  
Permanent link to this record
 

 
Author Diego Velazquez; Josep M. Gonfaus; Pau Rodriguez; Xavier Roca; Seiichi Ozawa; Jordi Gonzalez edit  url
doi  openurl
  Title Logo Detection With No Priors Type Journal Article
  Year 2021 Publication IEEE Access Abbreviated Journal ACCESS  
  Volume 9 Issue (down) Pages 106998-107011  
  Keywords  
  Abstract In recent years, top referred methods on object detection like R-CNN have implemented this task as a combination of proposal region generation and supervised classification on the proposed bounding boxes. Although this pipeline has achieved state-of-the-art results in multiple datasets, it has inherent limitations that make object detection a very complex and inefficient task in computational terms. Instead of considering this standard strategy, in this paper we enhance Detection Transformers (DETR) which tackles object detection as a set-prediction problem directly in an end-to-end fully differentiable pipeline without requiring priors. In particular, we incorporate Feature Pyramids (FP) to the DETR architecture and demonstrate the effectiveness of the resulting DETR-FP approach on improving logo detection results thanks to the improved detection of small logos. So, without requiring any domain specific prior to be fed to the model, DETR-FP obtains competitive results on the OpenLogo and MS-COCO datasets offering a relative improvement of up to 30%, when compared to a Faster R-CNN baseline which strongly depends on hand-designed priors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ISE Approved no  
  Call Number Admin @ si @ VGR2021 Serial 3664  
Permanent link to this record
 

 
Author Henry Velesaca; Patricia Suarez; Dario Carpio; Angel Sappa edit  url
openurl 
  Title Synthesized Image Datasets: Towards an Annotation-Free Instance Segmentation Strategy Type Conference Article
  Year 2021 Publication 16th International Symposium on Visual Computing Abbreviated Journal  
  Volume 13017 Issue (down) Pages 131–143  
  Keywords  
  Abstract This paper presents a complete pipeline to perform deep learning-based instance segmentation of different types of grains (e.g., corn, sunflower, soybeans, lentils, chickpeas, mote, and beans). The proposed approach consists of using synthesized image datasets for the training process, which are easily generated according to the category of the instance to be segmented. The synthesized imaging process allows generating a large set of well-annotated grain samples with high variability—as large and high as the user requires. Instance segmentation is performed through a popular deep learning based approach, the Mask R-CNN architecture, but any learning-based instance segmentation approach can be considered. Results obtained by the proposed pipeline show that the strategy of using synthesized image datasets for training instance segmentation helps to avoid the time-consuming image annotation stage, as well as to achieve higher intersection over union and average precision performances. Results obtained with different varieties of grains are shown, as well as comparisons with manually annotated images, showing both the simplicity of the process and the improvements in the performance.  
  Address Virtual; October 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ISVC  
  Notes MSIAU Approved no  
  Call Number Admin @ si @ VSC2021 Serial 3667  
Permanent link to this record
 

 
Author Patricia Suarez; Dario Carpio; Angel Sappa edit  url
openurl 
  Title Non-homogeneous Haze Removal Through a Multiple Attention Module Architecture Type Conference Article
  Year 2021 Publication 16th International Symposium on Visual Computing Abbreviated Journal  
  Volume 13018 Issue (down) Pages 178–190  
  Keywords  
  Abstract This paper presents a novel attention based architecture to remove non-homogeneous haze. The proposed model is focused on obtaining the most representative characteristics of the image, at each learning cycle, by means of adaptive attention modules coupled with a residual learning convolutional network. The latter is based on the Res2Net model. The proposed architecture is trained with just a few set of images. Its performance is evaluated on a public benchmark—images from the non-homogeneous haze NTIRE 2021 challenge—and compared with state of the art approaches reaching the best result.  
  Address Virtual; October 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ISVC  
  Notes MSIAU Approved no  
  Call Number Admin @ si @ SCS2021 Serial 3668  
Permanent link to this record
 

 
Author F.Negin; Pau Rodriguez; M.Koperski; A.Kerboua; Jordi Gonzalez; J.Bourgeois; E.Chapoulie; P.Robert; F.Bremond edit  url
openurl 
  Title PRAXIS: Towards automatic cognitive assessment using gesture recognition Type Journal Article
  Year 2018 Publication Expert Systems with Applications Abbreviated Journal ESWA  
  Volume 106 Issue (down) Pages 21-35  
  Keywords  
  Abstract Praxis test is a gesture-based diagnostic test which has been accepted as diagnostically indicative of cortical pathologies such as Alzheimer’s disease. Despite being simple, this test is oftentimes skipped by the clinicians. In this paper, we propose a novel framework to investigate the potential of static and dynamic upper-body gestures based on the Praxis test and their potential in a medical framework to automatize the test procedures for computer-assisted cognitive assessment of older adults.

In order to carry out gesture recognition as well as correctness assessment of the performances we have recollected a novel challenging RGB-D gesture video dataset recorded by Kinect v2, which contains 29 specific gestures suggested by clinicians and recorded from both experts and patients performing the gesture set. Moreover, we propose a framework to learn the dynamics of upper-body gestures, considering the videos as sequences of short-term clips of gestures. Our approach first uses body part detection to extract image patches surrounding the hands and then, by means of a fine-tuned convolutional neural network (CNN) model, it learns deep hand features which are then linked to a long short-term memory to capture the temporal dependencies between video frames.
We report the results of four developed methods using different modalities. The experiments show effectiveness of our deep learning based approach in gesture recognition and performance assessment tasks. Satisfaction of clinicians from the assessment reports indicates the impact of framework corresponding to the diagnosis.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ISE Approved no  
  Call Number Admin @ si @ NRK2018 Serial 3669  
Permanent link to this record
 

 
Author Javad Zolfaghari Bengar; Joost Van de Weijer; Bartlomiej Twardowski; Bogdan Raducanu edit  url
doi  openurl
  Title Reducing Label Effort: Self- Supervised Meets Active Learning Type Conference Article
  Year 2021 Publication International Conference on Computer Vision Workshops Abbreviated Journal  
  Volume Issue (down) Pages 1631-1639  
  Keywords  
  Abstract Active learning is a paradigm aimed at reducing the annotation effort by training the model on actively selected informative and/or representative samples. Another paradigm to reduce the annotation effort is self-training that learns from a large amount of unlabeled data in an unsupervised way and fine-tunes on few labeled samples. Recent developments in self-training have achieved very impressive results rivaling supervised learning on some datasets. The current work focuses on whether the two paradigms can benefit from each other. We studied object recognition datasets including CIFAR10, CIFAR100 and Tiny ImageNet with several labeling budgets for the evaluations. Our experiments reveal that self-training is remarkably more efficient than active learning at reducing the labeling effort, that for a low labeling budget, active learning offers no benefit to self-training, and finally that the combination of active learning and self-training is fruitful when the labeling budget is high. The performance gap between active learning trained either with self-training or from scratch diminishes as we approach to the point where almost half of the dataset is labeled.  
  Address October 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICCVW  
  Notes LAMP; OR Approved no  
  Call Number Admin @ si @ ZVT2021 Serial 3672  
Permanent link to this record
 

 
Author Pau Riba; Sounak Dey; Ali Furkan Biten; Josep Llados edit   pdf
openurl 
  Title Localizing Infinity-shaped fishes: Sketch-guided object localization in the wild Type Miscellaneous
  Year 2021 Publication Arxiv Abbreviated Journal  
  Volume Issue (down) Pages  
  Keywords  
  Abstract This work investigates the problem of sketch-guided object localization (SGOL), where human sketches are used as queries to conduct the object localization in natural images. In this cross-modal setting, we first contribute with a tough-to-beat baseline that without any specific SGOL training is able to outperform the previous works on a fixed set of classes. The baseline is useful to analyze the performance of SGOL approaches based on available simple yet powerful methods. We advance prior arts by proposing a sketch-conditioned DETR (DEtection TRansformer) architecture which avoids a hard classification and alleviates the domain gap between sketches and images to localize object instances. Although the main goal of SGOL is focused on object detection, we explored its natural extension to sketch-guided instance segmentation. This novel task allows to move towards identifying the objects at pixel level, which is of key importance in several applications. We experimentally demonstrate that our model and its variants significantly advance over previous state-of-the-art results. All training and testing code of our model will be released to facilitate future researchhttps://github.com/priba/sgol_wild.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.121 Approved no  
  Call Number Admin @ si @ RDB2021 Serial 3674  
Permanent link to this record
 

 
Author Albert Suso; Pau Riba; Oriol Ramos Terrades; Josep Llados edit  url
openurl 
  Title A Self-supervised Inverse Graphics Approach for Sketch Parametrization Type Conference Article
  Year 2021 Publication 16th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume 12916 Issue (down) Pages 28-42  
  Keywords  
  Abstract The study of neural generative models of handwritten text and human sketches is a hot topic in the computer vision field. The landmark SketchRNN provided a breakthrough by sequentially generating sketches as a sequence of waypoints, and more recent articles have managed to generate fully vector sketches by coding the strokes as Bézier curves. However, the previous attempts with this approach need them all a ground truth consisting in the sequence of points that make up each stroke, which seriously limits the datasets the model is able to train in. In this work, we present a self-supervised end-to-end inverse graphics approach that learns to embed each image to its best fit of Bézier curves. The self-supervised nature of the training process allows us to train the model in a wider range of datasets, but also to perform better after-training predictions by applying an overfitting process on the input binary image. We report qualitative an quantitative evaluations on the MNIST and the Quick, Draw! datasets.  
  Address Lausanne; Suissa; September 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.121 Approved no  
  Call Number Admin @ si @ SRR2021 Serial 3675  
Permanent link to this record
 

 
Author Sanket Biswas; Pau Riba; Josep Llados; Umapada Pal edit   pdf
url  doi
openurl 
  Title Graph-Based Deep Generative Modelling for Document Layout Generation Type Conference Article
  Year 2021 Publication 16th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume 12917 Issue (down) Pages 525-537  
  Keywords  
  Abstract One of the major prerequisites for any deep learning approach is the availability of large-scale training data. When dealing with scanned document images in real world scenarios, the principal information of its content is stored in the layout itself. In this work, we have proposed an automated deep generative model using Graph Neural Networks (GNNs) to generate synthetic data with highly variable and plausible document layouts that can be used to train document interpretation systems, in this case, specially in digital mailroom applications. It is also the first graph-based approach for document layout generation task experimented on administrative document images, in this case, invoices.  
  Address Lausanne; Suissa; September 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.121; 600.140; 110.312 Approved no  
  Call Number Admin @ si @ BRL2021 Serial 3676  
Permanent link to this record
 

 
Author Josep Llados edit  openurl
  Title The 5G of Document Intelligence Type Conference Article
  Year 2021 Publication 3rd Workshop on Future of Document Analysis and Recognition Abbreviated Journal  
  Volume Issue (down) Pages  
  Keywords  
  Abstract  
  Address Lausanne; Suissa; September 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference FDAR  
  Notes DAG Approved no  
  Call Number Admin @ si @ Serial 3677  
Permanent link to this record
 

 
Author Mohamed Ali Souibgui; Sanket Biswas; Sana Khamekhem Jemni; Yousri Kessentini; Alicia Fornes; Josep Llados; Umapada Pal edit   pdf
doi  openurl
  Title DocEnTr: An End-to-End Document Image Enhancement Transformer Type Conference Article
  Year 2022 Publication 26th International Conference on Pattern Recognition Abbreviated Journal  
  Volume Issue (down) Pages 1699-1705  
  Keywords Degradation; Head; Optical character recognition; Self-supervised learning; Benchmark testing; Transformers; Magnetic heads  
  Abstract Document images can be affected by many degradation scenarios, which cause recognition and processing difficulties. In this age of digitization, it is important to denoise them for proper usage. To address this challenge, we present a new encoder-decoder architecture based on vision transformers to enhance both machine-printed and handwritten document images, in an end-to-end fashion. The encoder operates directly on the pixel patches with their positional information without the use of any convolutional layers, while the decoder reconstructs a clean image from the encoded patches. Conducted experiments show a superiority of the proposed model compared to the state-of the-art methods on several DIBCO benchmarks. Code and models will be publicly available at: https://github.com/dali92002/DocEnTR  
  Address August 21-25, 2022 , Montréal Québec  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICPR  
  Notes DAG; 600.121; 600.162; 602.230; 600.140 Approved no  
  Call Number Admin @ si @ SBJ2022 Serial 3730  
Permanent link to this record
 

 
Author Fei Yang; Yaxing Wang; Luis Herranz; Yongmei Cheng; Mikhail Mozerov edit   pdf
url  openurl
  Title A Novel Framework for Image-to-image Translation and Image Compression Type Journal Article
  Year 2022 Publication Neurocomputing Abbreviated Journal NEUCOM  
  Volume 508 Issue (down) Pages 58-70  
  Keywords  
  Abstract Data-driven paradigms using machine learning are becoming ubiquitous in image processing and communications. In particular, image-to-image (I2I) translation is a generic and widely used approach to image processing problems, such as image synthesis, style transfer, and image restoration. At the same time, neural image compression has emerged as a data-driven alternative to traditional coding approaches in visual communications. In this paper, we study the combination of these two paradigms into a joint I2I compression and translation framework, focusing on multi-domain image synthesis. We first propose distributed I2I translation by integrating quantization and entropy coding into an I2I translation framework (i.e. I2Icodec). In practice, the image compression functionality (i.e. autoencoding) is also desirable, requiring to deploy alongside I2Icodec a regular image codec. Thus, we further propose a unified framework that allows both translation and autoencoding capabilities in a single codec. Adaptive residual blocks conditioned on the translation/compression mode provide flexible adaptation to the desired functionality. The experiments show promising results in both I2I translation and image compression using a single model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP Approved no  
  Call Number Admin @ si @ YWH2022 Serial 3679  
Permanent link to this record
 

 
Author Shun Yao; Fei Yang; Yongmei Cheng; Mikhail Mozerov edit   pdf
url  doi
openurl 
  Title 3D Shapes Local Geometry Codes Learning with SDF Type Conference Article
  Year 2021 Publication International Conference on Computer Vision Workshops Abbreviated Journal  
  Volume Issue (down) Pages 2110-2117  
  Keywords  
  Abstract A signed distance function (SDF) as the 3D shape description is one of the most effective approaches to represent 3D geometry for rendering and reconstruction. Our work is inspired by the state-of-the-art method DeepSDF [17] that learns and analyzes the 3D shape as the iso-surface of its shell and this method has shown promising results especially in the 3D shape reconstruction and compression domain. In this paper, we consider the degeneration problem of reconstruction coming from the capacity decrease of the DeepSDF model, which approximates the SDF with a neural network and a single latent code. We propose Local Geometry Code Learning (LGCL), a model that improves the original DeepSDF results by learning from a local shape geometry of the full 3D shape. We add an extra graph neural network to split the single transmittable latent code into a set of local latent codes distributed on the 3D shape. Mentioned latent codes are used to approximate the SDF in their local regions, which will alleviate the complexity of the approximation compared to the original DeepSDF. Furthermore, we introduce a new geometric loss function to facilitate the training of these local latent codes. Note that other local shape adjusting methods use the 3D voxel representation, which in turn is a problem highly difficult to solve or even is insolvable. In contrast, our architecture is based on graph processing implicitly and performs the learning regression process directly in the latent code space, thus make the proposed architecture more flexible and also simple for realization. Our experiments on 3D shape reconstruction demonstrate that our LGCL method can keep more details with a significantly smaller size of the SDF decoder and outperforms considerably the original DeepSDF method under the most important quantitative metrics.  
  Address VIRTUAL; October 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICCVW  
  Notes LAMP Approved no  
  Call Number Admin @ si @ YYC2021 Serial 3681  
Permanent link to this record
 

 
Author Yasuko Sugito; Javier Vazquez; Trevor Canham; Marcelo Bertalmio edit  doi
openurl 
  Title Image quality evaluation in professional HDR/WCG production questions the need for HDR metrics Type Journal Article
  Year 2022 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP  
  Volume 31 Issue (down) Pages 5163 - 5177  
  Keywords Measurement; Image color analysis; Image coding; Production; Dynamic range; Brightness; Extraterrestrial measurements  
  Abstract In the quality evaluation of high dynamic range and wide color gamut (HDR/WCG) images, a number of works have concluded that native HDR metrics, such as HDR visual difference predictor (HDR-VDP), HDR video quality metric (HDR-VQM), or convolutional neural network (CNN)-based visibility metrics for HDR content, provide the best results. These metrics consider only the luminance component, but several color difference metrics have been specifically developed for, and validated with, HDR/WCG images. In this paper, we perform subjective evaluation experiments in a professional HDR/WCG production setting, under a real use case scenario. The results are quite relevant in that they show, firstly, that the performance of HDR metrics is worse than that of a classic, simple standard dynamic range (SDR) metric applied directly to the HDR content; and secondly, that the chrominance metrics specifically developed for HDR/WCG imaging have poor correlation with observer scores and are also outperformed by an SDR metric. Based on these findings, we show how a very simple framework for creating color HDR metrics, that uses only luminance SDR metrics, transfer functions, and classic color spaces, is able to consistently outperform, by a considerable margin, state-of-the-art HDR metrics on a varied set of HDR content, for both perceptual quantization (PQ) and Hybrid Log-Gamma (HLG) encoding, luminance and chroma distortions, and on different color spaces of common use.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes 600.161; 611.007 Approved no  
  Call Number Admin @ si @ SVG2022 Serial 3683  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: