Jose Luis Gomez, Gabriel Villalonga, & Antonio Lopez. (2021). Co-Training for Deep Object Detection: Comparing Single-Modal and Multi-Modal Approaches. SENS - Sensors, 21(9), 3185.
Abstract: Top-performing computer vision models are powered by convolutional neural networks (CNNs). Training an accurate CNN highly depends on both the raw sensor data and their associated ground truth (GT). Collecting such GT is usually done through human labeling, which is time-consuming and does not scale as we wish. This data-labeling bottleneck may be intensified due to domain shifts among image sensors, which could force per-sensor data labeling. In this paper, we focus on the use of co-training, a semi-supervised learning (SSL) method, for obtaining self-labeled object bounding boxes (BBs), i.e., the GT to train deep object detectors. In particular, we assess the goodness of multi-modal co-training by relying on two different views of an image, namely, appearance (RGB) and estimated depth (D). Moreover, we compare appearance-based single-modal co-training with multi-modal. Our results suggest that in a standard SSL setting (no domain shift, a few human-labeled data) and under virtual-to-real domain shift (many virtual-world labeled data, no human-labeled data) multi-modal co-training outperforms single-modal. In the latter case, by performing GAN-based domain translation both co-training modalities are on par, at least when using an off-the-shelf depth estimation model not specifically trained on the translated images.
Keywords: co-training; multi-modality; vision-based object detection; ADAS; self-driving
|
Zhengying Liu, Adrien Pavao, Zhen Xu, Sergio Escalera, Fabio Ferreira, Isabelle Guyon, et al. (2021). Winning Solutions and Post-Challenge Analyses of the ChaLearn AutoDL Challenge 2019. TPAMI - IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(9), 3108–3125.
Abstract: This paper reports the results and post-challenge analyses of ChaLearn's AutoDL challenge series, which helped sorting out a profusion of AutoML solutions for Deep Learning (DL) that had been introduced in a variety of settings, but lacked fair comparisons. All input data modalities (time series, images, videos, text, tabular) were formatted as tensors and all tasks were multi-label classification problems. Code submissions were executed on hidden tasks, with limited time and computational resources, pushing solutions that get results quickly. In this setting, DL methods dominated, though popular Neural Architecture Search (NAS) was impractical. Solutions relied on fine-tuned pre-trained networks, with architectures matching data modality. Post-challenge tests did not reveal improvements beyond the imposed time limit. While no component is particularly original or novel, a high level modular organization emerged featuring a “meta-learner”, “data ingestor”, “model selector”, “model/learner”, and “evaluator”. This modularity enabled ablation studies, which revealed the importance of (off-platform) meta-learning, ensembling, and efficient data management. Experiments on heterogeneous module combinations further confirm the (local) optimality of the winning solutions. Our challenge legacy includes an ever-lasting benchmark (http://autodl.chalearn.org), the open-sourced code of the winners, and a free “AutoDL self-service.”
|
O.F.Ahmad, Y.Mori, M.Misawa, S.Kudo, J.T.Anderson, & Jorge Bernal. (2021). Establishing key research questions for the implementation of artificial intelligence in colonoscopy: a modified Delphi method. END - Endoscopy, 53(9), 893–901.
Abstract: BACKGROUND : Artificial intelligence (AI) research in colonoscopy is progressing rapidly but widespread clinical implementation is not yet a reality. We aimed to identify the top implementation research priorities. METHODS : An established modified Delphi approach for research priority setting was used. Fifteen international experts, including endoscopists and translational computer scientists/engineers, from nine countries participated in an online survey over 9 months. Questions related to AI implementation in colonoscopy were generated as a long-list in the first round, and then scored in two subsequent rounds to identify the top 10 research questions. RESULTS : The top 10 ranked questions were categorized into five themes. Theme 1: clinical trial design/end points (4 questions), related to optimum trial designs for polyp detection and characterization, determining the optimal end points for evaluation of AI, and demonstrating impact on interval cancer rates. Theme 2: technological developments (3 questions), including improving detection of more challenging and advanced lesions, reduction of false-positive rates, and minimizing latency. Theme 3: clinical adoption/integration (1 question), concerning the effective combination of detection and characterization into one workflow. Theme 4: data access/annotation (1 question), concerning more efficient or automated data annotation methods to reduce the burden on human experts. Theme 5: regulatory approval (1 question), related to making regulatory approval processes more efficient. CONCLUSIONS : This is the first reported international research priority setting exercise for AI in colonoscopy. The study findings should be used as a framework to guide future research with key stakeholders to accelerate the clinical implementation of AI in endoscopy.
|
Ana Garcia Rodriguez, Yael Tudela, Henry Cordova, S. Carballal, I. Ordas, L. Moreira, et al. (2022). In vivo computer-aided diagnosis of colorectal polyps using white light endoscopy. ENDIO - Endoscopy International Open, 10(9), E1201–E1207.
Abstract: Background and study aims Artificial intelligence is currently able to accurately predict the histology of colorectal polyps. However, systems developed to date use complex optical technologies and have not been tested in vivo. The objective of this study was to evaluate the efficacy of a new deep learning-based optical diagnosis system, ATENEA, in a real clinical setting using only high-definition white light endoscopy (WLE) and to compare its performance with endoscopists. Methods ATENEA was prospectively tested in real life on consecutive polyps detected in colorectal cancer screening colonoscopies at Hospital Clínic. No images were discarded, and only WLE was used. The in vivo ATENEA's prediction (adenoma vs non-adenoma) was compared with the prediction of four staff endoscopists without specific training in optical diagnosis for the study purposes. Endoscopists were blind to the ATENEA output. Histology was the gold standard. Results Ninety polyps (median size: 5 mm, range: 2-25) from 31 patients were included of which 69 (76.7 %) were adenomas. ATENEA correctly predicted the histology in 63 of 69 (91.3 %, 95 % CI: 82 %-97 %) adenomas and 12 of 21 (57.1 %, 95 % CI: 34 %-78 %) non-adenomas while endoscopists made correct predictions in 52 of 69 (75.4 %, 95 % CI: 60 %-85 %) and 20 of 21 (95.2 %, 95 % CI: 76 %-100 %), respectively. The global accuracy was 83.3 % (95 % CI: 74%-90 %) and 80 % (95 % CI: 70 %-88 %) for ATENEA and endoscopists, respectively. Conclusion ATENEA can accurately be used for in vivo characterization of colorectal polyps, enabling the endoscopist to make direct decisions. ATENEA showed a global accuracy similar to that of endoscopists despite an unsatisfactory performance for non-adenomatous lesions.
|
Saad Minhas, Zeba Khanam, Shoaib Ehsan, Klaus McDonald Maier, & Aura Hernandez-Sabate. (2022). Weather Classification by Utilizing Synthetic Data. SENS - Sensors, 22(9), 3193.
Abstract: Weather prediction from real-world images can be termed a complex task when targeting classification using neural networks. Moreover, the number of images throughout the available datasets can contain a huge amount of variance when comparing locations with the weather those images are representing. In this article, the capabilities of a custom built driver simulator are explored specifically to simulate a wide range of weather conditions. Moreover, the performance of a new synthetic dataset generated by the above simulator is also assessed. The results indicate that the use of synthetic datasets in conjunction with real-world datasets can increase the training efficiency of the CNNs by as much as 74%. The article paves a way forward to tackle the persistent problem of bias in vision-based datasets.
Keywords: Weather classification; synthetic data; dataset; autonomous car; computer vision; advanced driver assistance systems; deep learning; intelligent transportation systems
|
Swathikiran Sudhakaran, Sergio Escalera, & Oswald Lanz. (2023). Gate-Shift-Fuse for Video Action Recognition. TPAMI - IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(9), 10913–10928.
Abstract: Convolutional Neural Networks are the de facto models for image recognition. However 3D CNNs, the straight forward extension of 2D CNNs for video recognition, have not achieved the same success on standard action recognition benchmarks. One of the main reasons for this reduced performance of 3D CNNs is the increased computational complexity requiring large scale annotated datasets to train them in scale. 3D kernel factorization approaches have been proposed to reduce the complexity of 3D CNNs. Existing kernel factorization approaches follow hand-designed and hard-wired techniques. In this paper we propose Gate-Shift-Fuse (GSF), a novel spatio-temporal feature extraction module which controls interactions in spatio-temporal decomposition and learns to adaptively route features through time and combine them in a data dependent manner. GSF leverages grouped spatial gating to decompose input tensor and channel weighting to fuse the decomposed tensors. GSF can be inserted into existing 2D CNNs to convert them into an efficient and high performing spatio-temporal feature extractor, with negligible parameter and compute overhead. We perform an extensive analysis of GSF using two popular 2D CNN families and achieve state-of-the-art or competitive performance on five standard action recognition benchmarks.
Keywords: Action Recognition; Video Classification; Spatial Gating; Channel Fusion
|
Kunal Biswas, Palaiahnakote Shivakumara, Umapada Pal, Tong Lu, Michel Blumenstein, & Josep Llados. (2023). Classification of aesthetic natural scene images using statistical and semantic features. MTAP - Multimedia Tools and Applications, 82(9), 13507–13532.
Abstract: Aesthetic image analysis is essential for improving the performance of multimedia image retrieval systems, especially from a repository of social media and multimedia content stored on mobile devices. This paper presents a novel method for classifying aesthetic natural scene images by studying the naturalness of image content using statistical features, and reading text in the images using semantic features. Unlike existing methods that focus only on image quality with human information, the proposed approach focuses on image features as well as text-based semantic features without human intervention to reduce the gap between subjectivity and objectivity in the classification. The aesthetic classes considered in this work are (i) Very Pleasant, (ii) Pleasant, (iii) Normal and (iv) Unpleasant. The naturalness is represented by features of focus, defocus, perceived brightness, perceived contrast, blurriness and noisiness, while semantics are represented by text recognition, description of the images and labels of images, profile pictures, and banner images. Furthermore, a deep learning model is proposed in a novel way to fuse statistical and semantic features for the classification of aesthetic natural scene images. Experiments on our own dataset and the standard datasets demonstrate that the proposed approach achieves 92.74%, 88.67% and 83.22% average classification rates on our own dataset, AVA dataset and CUHKPQ dataset, respectively. Furthermore, a comparative study of the proposed model with the existing methods shows that the proposed method is effective for the classification of aesthetic social media images.
|
Antoni Rosell, Sonia Baeza, S. Garcia-Reina, JL. Mate, Ignasi Guasch, I. Nogueira, et al. (2022). EP01.05-001 Radiomics to Increase the Effectiveness of Lung Cancer Screening Programs. Radiolung Preliminary Results. JTO - Journal of Thoracic Oncology, 17(9), S182.
|
Jaykishan Patel, Alban Flachot, Javier Vazquez, David H. Brainard, Thomas S. A. Wallis, Marcus A. Brubaker, et al. (2023). A deep convolutional neural network trained to infer surface reflectance is deceived by mid-level lightness illusions. JV - Journal of Vision, 23(9), 4817.
Abstract: A long-standing view is that lightness illusions are by-products of strategies employed by the visual system to stabilize its perceptual representation of surface reflectance against changes in illumination. Computationally, one such strategy is to infer reflectance from the retinal image, and to base the lightness percept on this inference. CNNs trained to infer reflectance from images have proven successful at solving this problem under limited conditions. To evaluate whether these CNNs provide suitable starting points for computational models of human lightness perception, we tested a state-of-the-art CNN on several lightness illusions, and compared its behaviour to prior measurements of human performance. We trained a CNN (Yu & Smith, 2019) to infer reflectance from luminance images. The network had a 30-layer hourglass architecture with skip connections. We trained the network via supervised learning on 100K images, rendered in Blender, each showing randomly placed geometric objects (surfaces, cubes, tori, etc.), with random Lambertian reflectance patterns (solid, Voronoi, or low-pass noise), under randomized point+ambient lighting. The renderer also provided the ground-truth reflectance images required for training. After training, we applied the network to several visual illusions. These included the argyle, Koffka-Adelson, snake, White’s, checkerboard assimilation, and simultaneous contrast illusions, along with their controls where appropriate. The CNN correctly predicted larger illusions in the argyle, Koffka-Adelson, and snake images than in their controls. It also correctly predicted an assimilation effect in White's illusion. It did not, however, account for the checkerboard assimilation or simultaneous contrast effects. These results are consistent with the view that at least some lightness phenomena are by-products of a rational approach to inferring stable representations of physical properties from intrinsically ambiguous retinal images. Furthermore, they suggest that CNN models may be a promising starting point for new models of human lightness perception.
|
David Guillamet, & Jordi Vitria. (2003). Evaluation of distance metrics for recognition based on non-negative matrix factorization. PRL - Pattern Recognition Letters, 24(9-10), 1599 –1605.
|
Monica Piñol, Angel Sappa, & Ricardo Toledo. (2015). Adaptive Feature Descriptor Selection based on a Multi-Table Reinforcement Learning Strategy. NEUCOM - Neurocomputing, 150(A), 106–115.
Abstract: This paper presents and evaluates a framework to improve the performance of visual object classification methods, which are based on the usage of image feature descriptors as inputs. The goal of the proposed framework is to learn the best descriptor for each image in a given database. This goal is reached by means of a reinforcement learning process using the minimum information. The visual classification system used to demonstrate the proposed framework is based on a bag of features scheme, and the reinforcement learning technique is implemented through the Q-learning approach. The behavior of the reinforcement learning with different state definitions is evaluated. Additionally, a method that combines all these states is formulated in order to select the optimal state. Finally, the chosen actions are obtained from the best set of image descriptors in the literature: PHOW, SIFT, C-SIFT, SURF and Spin. Experimental results using two public databases (ETH and COIL) are provided showing both the validity of the proposed approach and comparisons with state of the art. In all the cases the best results are obtained with the proposed approach.
Keywords: Reinforcement learning; Q-learning; Bag of features; Descriptors
|
Francisco Alvaro, Francisco Cruz, Joan Andreu Sanchez, Oriol Ramos Terrades, & Jose Miguel Benedi. (2015). Structure Detection and Segmentation of Documents Using 2D Stochastic Context-Free Grammars. NEUCOM - Neurocomputing, 150(A), 147–154.
Abstract: In this paper we dene a bidimensional extension of Stochastic Context-Free Grammars for structure detection and segmentation of images of documents.
Two sets of text classication features are used to perform an initial classication of each zone of the page. Then, the document segmentation is obtained as the most likely hypothesis according to a stochastic grammar. We used a dataset of historical marriage license books to validate this approach. We also tested several inference algorithms for Probabilistic Graphical Models
and the results showed that the proposed grammatical model outperformed
the other methods. Furthermore, grammars also provide the document structure
along with its segmentation.
Keywords: document image analysis; stochastic context-free grammars; text classication features
|
Daniel Sanchez, Miguel Angel Bautista, & Sergio Escalera. (2015). HuPBA 8k+: Dataset and ECOC-GraphCut based Segmentation of Human Limbs. NEUCOM - Neurocomputing, 150(A), 173–188.
Abstract: Human multi-limb segmentation in RGB images has attracted a lot of interest in the research community because of the huge amount of possible applications in fields like Human-Computer Interaction, Surveillance, eHealth, or Gaming. Nevertheless, human multi-limb segmentation is a very hard task because of the changes in appearance produced by different points of view, clothing, lighting conditions, occlusions, and number of articulations of the human body. Furthermore, this huge pose variability makes the availability of large annotated datasets difficult. In this paper, we introduce the HuPBA8k+ dataset. The dataset contains more than 8000 labeled frames at pixel precision, including more than 120000 manually labeled samples of 14 different limbs. For completeness, the dataset is also labeled at frame-level with action annotations drawn from an 11 action dictionary which includes both single person actions and person-person interactive actions. Furthermore, we also propose a two-stage approach for the segmentation of human limbs. In a first stage, human limbs are trained using cascades of classifiers to be split in a tree-structure way, which is included in an Error-Correcting Output Codes (ECOC) framework to define a body-like probability map. This map is used to obtain a binary mask of the subject by means of GMM color modelling and GraphCuts theory. In a second stage, we embed a similar tree-structure in an ECOC framework to build a more accurate set of limb-like probability maps within the segmented user mask, that are fed to a multi-label GraphCut procedure to obtain final multi-limb segmentation. The methodology is tested on the novel HuPBA8k+ dataset, showing performance improvements in comparison to state-of-the-art approaches. In addition, a baseline of standard action recognition methods for the 11 actions categories of the novel dataset is also provided.
Keywords: Human limb segmentation; ECOC; Graph-Cuts
|
Juan Ramon Terven Salinas, Bogdan Raducanu, Maria Elena Meza-de-Luna, & Joaquin Salas. (2016). Head-gestures mirroring detection in dyadic social linteractions with computer vision-based wearable devices. NEUCOM - Neurocomputing, 175(B), 866–876.
Abstract: During face-to-face human interaction, nonverbal communication plays a fundamental role. A relevant aspect that takes part during social interactions is represented by mirroring, in which a person tends to mimic the non-verbal behavior (head and body gestures, vocal prosody, etc.) of the counterpart. In this paper, we introduce a computer vision-based system to detect mirroring in dyadic social interactions with the use of a wearable platform. In our context, mirroring is inferred as simultaneous head noddings displayed by the interlocutors. Our approach consists of the following steps: (1) facial features extraction; (2) facial features stabilization; (3) head nodding recognition; and (4) mirroring detection. Our system achieves a mirroring detection accuracy of 72% on a custom mirroring dataset.
Keywords: Head gestures recognition; Mirroring detection; Dyadic social interaction analysis; Wearable devices
|
Cesar Isaza, Joaquin Salas, & Bogdan Raducanu. (2010). Toward the Detection of Urban Infrastructures Edge Shadows. In eds. Blanc–Talon et al (Ed.), 12th International Conference on Advanced Concepts for Intelligent Vision Systems (Vol. 6474, 30–37). LNCS. Springer Berlin Heidelberg.
Abstract: In this paper, we propose a novel technique to detect the shadows cast by urban infrastructure, such as buildings, billboards, and traffic signs, using a sequence of images taken from a fixed camera. In our approach, we compute two different background models in parallel: one for the edges and one for the reflected light intensity. An algorithm is proposed to train the system to distinguish between moving edges in general and edges that belong to static objects, creating an edge background model. Then, during operation, a background intensity model allow us to separate between moving and static objects. Those edges included in the moving objects and those that belong to the edge background model are subtracted from the current image edges. The remaining edges are the ones cast by urban infrastructure. Our method is tested on a typical crossroad scene and the results show that the approach is sound and promising.
|