toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Frederic Sampedro; Sergio Escalera edit   pdf
url  doi
openurl 
  Title Spatial codification of label predictions in Multi-scale Stacked Sequential Learning: A case study on multi-class medical volume segmentation Type Journal Article
  Year 2015 Publication IET Computer Vision Abbreviated Journal IETCV  
  Volume 9 Issue (up) 3 Pages 439 - 446  
  Keywords  
  Abstract In this study, the authors propose the spatial codification of label predictions within the multi-scale stacked sequential learning (MSSL) framework, a successful learning scheme to deal with non-independent identically distributed data entries. After providing a motivation for this objective, they describe its theoretical framework based on the introduction of the blurred shape model as a smart descriptor to codify the spatial distribution of the predicted labels and define the new extended feature set for the second stacked classifier. They then particularise this scheme to be applied in volume segmentation applications. Finally, they test the implementation of the proposed framework in two medical volume segmentation datasets, obtaining significant performance improvements (with a 95% of confidence) in comparison to standard Adaboost classifier and classical MSSL approaches.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1751-9632 ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB Approved no  
  Call Number Admin @ si @ SaE2015 Serial 2551  
Permanent link to this record
 

 
Author Mikhail Mozerov; Joost Van de Weijer edit  doi
openurl 
  Title Accurate stereo matching by two step global optimization Type Journal Article
  Year 2015 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP  
  Volume 24 Issue (up) 3 Pages 1153-1163  
  Keywords  
  Abstract In stereo matching cost filtering methods and energy minimization algorithms are considered as two different techniques. Due to their global extend energy minimization methods obtain good stereo matching results. However, they tend to fail in occluded regions, in which cost filtering approaches obtain better results. In this paper we intend to combine both approaches with the aim to improve overall stereo matching results. We show that a global optimization with a fully connected model can be solved by cost fil tering methods. Based on this observation we propose to perform stereo matching as a two-step energy minimization algorithm. We consider two MRF models: a fully connected model defined on the complete set of pixels in an image and a conventional locally connected model. We solve the energy minimization problem for the fully connected model, after which the marginal function of the solution is used as the unary potential in the locally connected MRF model. Experiments on the Middlebury stereo datasets show that the proposed method achieves state-of-the-arts results.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1057-7149 ISBN Medium  
  Area Expedition Conference  
  Notes ISE; LAMP; 600.079; 600.078 Approved no  
  Call Number Admin @ si @ MoW2015a Serial 2568  
Permanent link to this record
 

 
Author Ivan Huerta; Marco Pedersoli; Jordi Gonzalez; Alberto Sanfeliu edit  doi
openurl 
  Title Combining where and what in change detection for unsupervised foreground learning in surveillance Type Journal Article
  Year 2015 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 48 Issue (up) 3 Pages 709-719  
  Keywords Object detection; Unsupervised learning; Motion segmentation; Latent variables; Support vector machine; Multiple appearance models; Video surveillance  
  Abstract Change detection is the most important task for video surveillance analytics such as foreground and anomaly detection. Current foreground detectors learn models from annotated images since the goal is to generate a robust foreground model able to detect changes in all possible scenarios. Unfortunately, manual labelling is very expensive. Most advanced supervised learning techniques based on generic object detection datasets currently exhibit very poor performance when applied to surveillance datasets because of the unconstrained nature of such environments in terms of types and appearances of objects. In this paper, we take advantage of change detection for training multiple foreground detectors in an unsupervised manner. We use statistical learning techniques which exploit the use of latent parameters for selecting the best foreground model parameters for a given scenario. In essence, the main novelty of our proposed approach is to combine the where (motion segmentation) and what (learning procedure) in change detection in an unsupervised way for improving the specificity and generalization power of foreground detectors at the same time. We propose a framework based on latent support vector machines that, given a noisy initialization based on motion cues, learns the correct position, aspect ratio, and appearance of all moving objects in a particular scene. Specificity is achieved by learning the particular change detections of a given scenario, and generalization is guaranteed since our method can be applied to any possible scene and foreground object, as demonstrated in the experimental results outperforming the state-of-the-art.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ISE; 600.063; 600.078 Approved no  
  Call Number Admin @ si @ HPG2015 Serial 2589  
Permanent link to this record
 

 
Author Christophe Rigaud; Clement Guerin; Dimosthenis Karatzas; Jean-Christophe Burie; Jean-Marc Ogier edit  doi
openurl 
  Title Knowledge-driven understanding of images in comic books Type Journal Article
  Year 2015 Publication International Journal on Document Analysis and Recognition Abbreviated Journal IJDAR  
  Volume 18 Issue (up) 3 Pages 199-221  
  Keywords Document Understanding; comics analysis; expert system  
  Abstract Document analysis is an active field of research, which can attain a complete understanding of the semantics of a given document. One example of the document understanding process is enabling a computer to identify the key elements of a comic book story and arrange them according to a predefined domain knowledge. In this study, we propose a knowledge-driven system that can interact with bottom-up and top-down information to progressively understand the content of a document. We model the comic book’s and the image processing domains knowledge for information consistency analysis. In addition, different image processing methods are improved or developed to extract panels, balloons, tails, texts, comic characters and their semantic relations in an unsupervised way.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-2833 ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.056; 600.077 Approved no  
  Call Number RGK2015 Serial 2595  
Permanent link to this record
 

 
Author G.Blasco; Simone Balocco; J.Puig; J.Sanchez-Gonzalez; W.Ricart; J.Daunis-I-Estadella; X.Molina; S.Pedraza; J.M.Fernandez-Real edit  doi
openurl 
  Title Carotid pulse wave velocity by magnetic resonance imaging is increased in middle-aged subjects with the metabolic syndrome Type Journal Article
  Year 2015 Publication International Journal of Cardiovascular Imaging Abbreviated Journal ICJI  
  Volume 31 Issue (up) 3 Pages 603-612  
  Keywords Metabolic syndrome; Arterial stiffness; Pulse wave velocity; Carotid artery; Magnetic resonance  
  Abstract Arterial pulse wave velocity (PWV), an independent predictor of cardiovascular disease, physiologically increases with age; however, growing evidence suggests metabolic syndrome (MetS) accelerates this increase. Magnetic resonance imaging (MRI) enables reliable noninvasive assessment of arterial stiffness by measuring arterial PWV in specific vascular segments. We investigated the association between the presence of MetS and its components with carotid PWV (cPWV) in asymptomatic subjects without diabetes. We assessed cPWV by MRI in 61 individuals (mean age, 55.3 ± 14.1 years; median age, 55 years): 30 with MetS and 31 controls with similar age, sex, body mass index, and LDL-cholesterol levels. The study population was dichotomized by the median age. To remove the physiological association between PWV and age, unpaired t tests and multiple regression analyses were performed using the residuals of the regression between PWV and age. cPWV was higher in middle-aged subjects with MetS than in those without (p = 0.001), but no differences were found in elder subjects (p = 0.313). cPWV was associated with diastolic blood pressure (r = 0.276, p = 0.033) and waist circumference (r = 0.268, p = 0.038). The presence of MetS was associated with increased cPWV regardless of age, sex, blood pressure, and waist (p = 0.007). The MetS components contributing independently to an increased cPWV were hypertension (p = 0.018) and hypertriglyceridemia (p = 0.002). The presence of MetS is associated with an increased cPWV in middle-aged subjects. In particular, hypertension and hypertriglyceridemia may contribute to early progression of carotid stiffness.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Netherlands Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1569-5794 ISBN Medium  
  Area Expedition Conference  
  Notes MILAB Approved no  
  Call Number Admin @ si @ BBP2015 Serial 2670  
Permanent link to this record
 

 
Author David Aldavert; Marçal Rusiñol; Ricardo Toledo; Josep Llados edit  doi
openurl 
  Title A Study of Bag-of-Visual-Words Representations for Handwritten Keyword Spotting Type Journal Article
  Year 2015 Publication International Journal on Document Analysis and Recognition Abbreviated Journal IJDAR  
  Volume 18 Issue (up) 3 Pages 223-234  
  Keywords Bag-of-Visual-Words; Keyword spotting; Handwritten documents; Performance evaluation  
  Abstract The Bag-of-Visual-Words (BoVW) framework has gained popularity among the document image analysis community, specifically as a representation of handwritten words for recognition or spotting purposes. Although in the computer vision field the BoVW method has been greatly improved, most of the approaches in the document image analysis domain still rely on the basic implementation of the BoVW method disregarding such latest refinements. In this paper, we present a review of those improvements and its application to the keyword spotting task. We thoroughly evaluate their impact against a baseline system in the well-known George Washington dataset and compare the obtained results against nine state-of-the-art keyword spotting methods. In addition, we also compare both the baseline and improved systems with the methods presented at the Handwritten Keyword Spotting Competition 2014.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-2833 ISBN Medium  
  Area Expedition Conference  
  Notes DAG; ADAS; 600.055; 600.061; 601.223; 600.077; 600.097 Approved no  
  Call Number Admin @ si @ ART2015 Serial 2679  
Permanent link to this record
 

 
Author Tadashi Araki; Sumit K. Banchhor; Narendra D. Londhe; Nobutaka Ikeda; Petia Radeva; Devarshi Shukla; Luca Saba; Antonella Balestrieri; Andrew Nicolaides; Shoaib Shafique; John R. Laird; Jasjit S. Suri edit  doi
openurl 
  Title Reliable and Accurate Calcium Volume Measurement in Coronary Artery Using Intravascular Ultrasound Videos Type Journal Article
  Year 2016 Publication Journal of Medical Systems Abbreviated Journal JMS  
  Volume 40 Issue (up) 3 Pages 51:1-51:20  
  Keywords Interventional cardiology; Atherosclerosis; Coronary arteries; IVUS; calcium volume; Soft computing; Performance Reliability; Accuracy  
  Abstract Quantitative assessment of calcified atherosclerotic volume within the coronary artery wall is vital for cardiac interventional procedures. The goal of this study is to automatically measure the calcium volume, given the borders of coronary vessel wall for all the frames of the intravascular ultrasound (IVUS) video. Three soft computing fuzzy classification techniques were adapted namely Fuzzy c-Means (FCM), K-means, and Hidden Markov Random Field (HMRF) for automated segmentation of calcium regions and volume computation. These methods were benchmarked against previously developed threshold-based method. IVUS image data sets (around 30,600 IVUS frames) from 15 patients were collected using 40 MHz IVUS catheter (Atlantis® SR Pro, Boston Scientific®, pullback speed of 0.5 mm/s). Calcium mean volume for FCM, K-means, HMRF and threshold-based method were 37.84 ± 17.38 mm3, 27.79 ± 10.94 mm3, 46.44 ± 19.13 mm3 and 35.92 ± 16.44 mm3 respectively. Cross-correlation, Jaccard Index and Dice Similarity were highest between FCM and threshold-based method: 0.99, 0.92 ± 0.02 and 0.95 + 0.02 respectively. Student’s t-test, z-test and Wilcoxon-test are also performed to demonstrate consistency, reliability and accuracy of the results. Given the vessel wall region, the system reliably and automatically measures the calcium volume in IVUS videos. Further, we validated our system against a trained expert using scoring: K-means showed the best performance with an accuracy of 92.80 %. Out procedure and protocol is along the line with method previously published clinically.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; Approved no  
  Call Number Admin @ si @ ABL2016 Serial 2729  
Permanent link to this record
 

 
Author Adriana Romero; Carlo Gatta; Gustavo Camps-Valls edit   pdf
doi  openurl
  Title Unsupervised Deep Feature Extraction for Remote Sensing Image Classification Type Journal Article
  Year 2016 Publication IEEE Transaction on Geoscience and Remote Sensing Abbreviated Journal TGRS  
  Volume 54 Issue (up) 3 Pages 1349 - 1362  
  Keywords  
  Abstract This paper introduces the use of single-layer and deep convolutional networks for remote sensing data analysis. Direct application to multi- and hyperspectral imagery of supervised (shallow or deep) convolutional networks is very challenging given the high input data dimensionality and the relatively small amount of available labeled data. Therefore, we propose the use of greedy layerwise unsupervised pretraining coupled with a highly efficient algorithm for unsupervised learning of sparse features. The algorithm is rooted on sparse representations and enforces both population and lifetime sparsity of the extracted features, simultaneously. We successfully illustrate the expressive power of the extracted representations in several scenarios: classification of aerial scenes, as well as land-use classification in very high resolution or land-cover classification from multi- and hyperspectral images. The proposed algorithm clearly outperforms standard principal component analysis (PCA) and its kernel counterpart (kPCA), as well as current state-of-the-art algorithms of aerial classification, while being extremely computationally efficient at learning representations of data. Results show that single-layer convolutional networks can extract powerful discriminative features only when the receptive field accounts for neighboring pixels and are preferred when the classification requires high resolution and detailed results. However, deep architectures significantly outperform single-layer variants, capturing increasing levels of abstraction and complexity throughout the feature hierarchy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0196-2892 ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.079;MILAB Approved no  
  Call Number Admin @ si @ RGC2016 Serial 2723  
Permanent link to this record
 

 
Author Maria Oliver; G. Haro; Mariella Dimiccoli; B. Mazin; C. Ballester edit   pdf
doi  openurl
  Title A Computational Model for Amodal Completion Type Journal Article
  Year 2016 Publication Journal of Mathematical Imaging and Vision Abbreviated Journal JMIV  
  Volume 56 Issue (up) 3 Pages 511–534  
  Keywords Perception; visual completion; disocclusion; Bayesian model;relatability; Euler elastica  
  Abstract This paper presents a computational model to recover the most likely interpretation
of the 3D scene structure from a planar image, where some objects may occlude others. The estimated scene interpretation is obtained by integrating some global and local cues and provides both the complete disoccluded objects that form the scene and their ordering according to depth.
Our method first computes several distal scenes which are compatible with the proximal planar image. To compute these different hypothesized scenes, we propose a perceptually inspired object disocclusion method, which works by minimizing the Euler's elastica as well as by incorporating the relatability of partially occluded contours and the convexity of the disoccluded objects. Then, to estimate the preferred scene we rely on a Bayesian model and define probabilities taking into account the global complexity of the objects in the hypothesized scenes as well as the effort of bringing these objects in their relative position in the planar image, which is also measured by an Euler's elastica-based quantity. The model is illustrated with numerical experiments on, both, synthetic and real images showing the ability of our model to reconstruct the occluded objects and the preferred perceptual order among them. We also present results on images of the Berkeley dataset with provided figure-ground ground-truth labeling.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; 601.235 Approved no  
  Call Number Admin @ si @ OHD2016b Serial 2745  
Permanent link to this record
 

 
Author C. Alejandro Parraga; Arash Akbarinia edit   pdf
doi  openurl
  Title NICE: A Computational Solution to Close the Gap from Colour Perception to Colour Categorization Type Journal Article
  Year 2016 Publication PLoS One Abbreviated Journal Plos  
  Volume 11 Issue (up) 3 Pages e0149538  
  Keywords  
  Abstract The segmentation of visible electromagnetic radiation into chromatic categories by the human visual system has been extensively studied from a perceptual point of view, resulting in several colour appearance models. However, there is currently a void when it comes to relate these results to the physiological mechanisms that are known to shape the pre-cortical and cortical visual pathway. This work intends to begin to fill this void by proposing a new physiologically plausible model of colour categorization based on Neural Isoresponsive Colour Ellipsoids (NICE) in the cone-contrast space defined by the main directions of the visual signals entering the visual cortex. The model was adjusted to fit psychophysical measures that concentrate on the categorical boundaries and are consistent with the ellipsoidal isoresponse surfaces of visual cortical neurons. By revealing the shape of such categorical colour regions, our measures allow for a more precise and parsimonious description, connecting well-known early visual processing mechanisms to the less understood phenomenon of colour categorization. To test the feasibility of our method we applied it to exemplary images and a popular ground-truth chart obtaining labelling results that are better than those of current state-of-the-art algorithms.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes NEUROBIT; 600.068 Approved no  
  Call Number Admin @ si @ PaA2016a Serial 2747  
Permanent link to this record
 

 
Author Xavier Perez Sala; Fernando De la Torre; Laura Igual; Sergio Escalera; Cecilio Angulo edit  url
openurl 
  Title Subspace Procrustes Analysis Type Journal Article
  Year 2017 Publication International Journal of Computer Vision Abbreviated Journal IJCV  
  Volume 121 Issue (up) 3 Pages 327–343  
  Keywords  
  Abstract Procrustes Analysis (PA) has been a popular technique to align and build 2-D statistical models of shapes. Given a set of 2-D shapes PA is applied to remove rigid transformations. Then, a non-rigid 2-D model is computed by modeling (e.g., PCA) the residual. Although PA has been widely used, it has several limitations for modeling 2-D shapes: occluded landmarks and missing data can result in local minima solutions, and there is no guarantee that the 2-D shapes provide a uniform sampling of the 3-D space of rotations for the object. To address previous issues, this paper proposes Subspace PA (SPA). Given several
instances of a 3-D object, SPA computes the mean and a 2-D subspace that can simultaneously model all rigid and non-rigid deformations of the 3-D object. We propose a discrete (DSPA) and continuous (CSPA) formulation for SPA, assuming that 3-D samples of an object are provided. DSPA extends the traditional PA, and produces unbiased 2-D models by uniformly sampling different views of the 3-D object. CSPA provides a continuous approach to uniformly sample the space of 3-D rotations, being more efficient in space and time. Experiments using SPA to learn 2-D models of bodies from motion capture data illustrate the benefits of our approach.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; HuPBA; no proj Approved no  
  Call Number Admin @ si @ PTI2017 Serial 2841  
Permanent link to this record
 

 
Author I. Sorodoc; S. Pezzelle; A. Herbelot; Mariella Dimiccoli; R. Bernardi edit  url
doi  openurl
  Title Learning quantification from images: A structured neural architecture Type Journal Article
  Year 2018 Publication Natural Language Engineering Abbreviated Journal NLE  
  Volume 24 Issue (up) 3 Pages 363-392  
  Keywords  
  Abstract Major advances have recently been made in merging language and vision representations. Most tasks considered so far have confined themselves to the processing of objects and lexicalised relations amongst objects (content words). We know, however, that humans (even pre-school children) can abstract over raw multimodal data to perform certain types of higher level reasoning, expressed in natural language by function words. A case in point is given by their ability to learn quantifiers, i.e. expressions like few, some and all. From formal semantics and cognitive linguistics, we know that quantifiers are relations over sets which, as a simplification, we can see as proportions. For instance, in most fish are red, most encodes the proportion of fish which are red fish. In this paper, we study how well current neural network strategies model such relations. We propose a task where, given an image and a query expressed by an object–property pair, the system must return a quantifier expressing which proportions of the queried object have the queried property. Our contributions are twofold. First, we show that the best performance on this task involves coupling state-of-the-art attention mechanisms with a network architecture mirroring the logical structure assigned to quantifiers by classic linguistic formalisation. Second, we introduce a new balanced dataset of image scenarios associated with quantification queries, which we hope will foster further research in this area.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; no menciona Approved no  
  Call Number Admin @ si @ SPH2018 Serial 3021  
Permanent link to this record
 

 
Author Marta Diez-Ferrer; Arturo Morales; Rosa Lopez Lisbona; Noelia Cubero; Cristian Tebe; Susana Padrones; Samantha Aso; Jordi Dorca; Debora Gil; Antoni Rosell edit  url
openurl 
  Title Ultrathin Bronchoscopy with and without Virtual Bronchoscopic Navigation: Influence of Segmentation on Diagnostic Yield Type Journal Article
  Year 2019 Publication Respiration Abbreviated Journal RES  
  Volume 97 Issue (up) 3 Pages 252-258  
  Keywords Lung cancer; Peripheral lung lesion; Diagnosis; Bronchoscopy; Ultrathin bronchoscopy; Virtual bronchoscopic navigation  
  Abstract Background: Bronchoscopy is a safe technique for diagnosing peripheral pulmonary lesions (PPLs), and virtual bronchoscopic navigation (VBN) helps guide the bronchoscope to PPLs. Objectives: We aimed to compare the diagnostic yield of VBN-guided and unguided ultrathin bronchoscopy (UTB) and explore clinical and technical factors associated with better results. We developed a diagnostic algorithm for deciding whether to use VBN to reach PPLs or choose an alternative diagnostic approach. Methods: We compared diagnostic yield between VBN-UTB (prospective cases) and unguided UTB (historical controls) and analyzed the VBN-UTB subgroup to identify clinical and technical variables that could predict the success of VBN-UTB. Results: Fifty-five cases and 110 controls were included. The overall diagnostic yield did not differ between the VBN-guided and unguided arms (47 and 40%, respectively; p = 0.354). Although the yield was slightly higher for PPLs ≤20 mm in the VBN-UTB arm, the difference was not significant (p = 0.069). No other clinical characteristics were associated with a higher yield in a subgroup analysis, but an 85% diagnostic yield was observed when segmentation was optimal and the PPL was endobronchial (vs. 30% when segmentation was suboptimal and 20% when segmentation was optimal but the PPL was extrabronchial). Conclusions: VBN-guided UTB is not superior to unguided UTB. A greater impact of VBN-guided over unguided UTB is highly dependent on both segmentation quality and an endobronchial location of the PPL. Segmentation quality should be considered before starting a procedure, when an alternative technique that may improve yield can be chosen, saving time and resources.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; 600.145; 600.139 Approved no  
  Call Number Admin @ si @ DML2019 Serial 3134  
Permanent link to this record
 

 
Author Cristina Sanchez Montes; F. Javier Sanchez; Jorge Bernal; Henry Cordova; Maria Lopez Ceron; Miriam Cuatrecasas; Cristina Rodriguez de Miguel; Ana Garcia Rodriguez; Rodrigo Garces Duran; Maria Pellise; Josep Llach; Gloria Fernandez Esparrach edit   pdf
doi  openurl
  Title Computer-aided Prediction of Polyp Histology on White-Light Colonoscopy using Surface Pattern Analysis Type Journal Article
  Year 2019 Publication Endoscopy Abbreviated Journal END  
  Volume 51 Issue (up) 3 Pages 261-265  
  Keywords  
  Abstract Background and study aims: To evaluate a new computational histology prediction system based on colorectal polyp textural surface patterns using high definition white light images.
Patients and methods: Textural elements (textons) were characterized according to their contrast with respect to the surface, shape and number of bifurcations, assuming that dysplastic polyps are associated with highly contrasted, large tubular patterns with some degree of bifurcation. Computer-aided diagnosis (CAD) was compared with pathological diagnosis and the diagnosis by the endoscopists using Kudo and NICE classification.
Results: Images of 225 polyps were evaluated (142 dysplastic and 83 non-dysplastic). CAD system correctly classified 205 (91.1%) polyps, 131/142 (92.3%) dysplastic and 74/83 (89.2%) non-dysplastic. For the subgroup of 100 diminutive (<5 mm) polyps, CAD correctly classified 87 (87%) polyps, 43/50 (86%) dysplastic and 44/50 (88%) non-dysplastic. There were not statistically significant differences in polyp histology prediction based on CAD system and on endoscopist assessment.
Conclusion: A computer vision system based on the characterization of the polyp surface in the white light accurately predicts colorectal polyp histology.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MV; 600.096; 600.119; 600.075 Approved no  
  Call Number Admin @ si @ SSB2019 Serial 3164  
Permanent link to this record
 

 
Author Katerine Diaz; Jesus Martinez del Rincon; Marçal Rusiñol; Aura Hernandez-Sabate edit   pdf
doi  openurl
  Title Feature Extraction by Using Dual-Generalized Discriminative Common Vectors Type Journal Article
  Year 2019 Publication Journal of Mathematical Imaging and Vision Abbreviated Journal JMIV  
  Volume 61 Issue (up) 3 Pages 331-351  
  Keywords Online feature extraction; Generalized discriminative common vectors; Dual learning; Incremental learning; Decremental learning  
  Abstract In this paper, a dual online subspace-based learning method called dual-generalized discriminative common vectors (Dual-GDCV) is presented. The method extends incremental GDCV by exploiting simultaneously both the concepts of incremental and decremental learning for supervised feature extraction and classification. Our methodology is able to update the feature representation space without recalculating the full projection or accessing the previously processed training data. It allows both adding information and removing unnecessary data from a knowledge base in an efficient way, while retaining the previously acquired knowledge. The proposed method has been theoretically proved and empirically validated in six standard face recognition and classification datasets, under two scenarios: (1) removing and adding samples of existent classes, and (2) removing and adding new classes to a classification problem. Results show a considerable computational gain without compromising the accuracy of the model in comparison with both batch methodologies and other state-of-art adaptive methods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; ADAS; 600.084; 600.118; 600.121; 600.129 Approved no  
  Call Number Admin @ si @ DRR2019 Serial 3172  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: