|   | 
Details
   web
Records
Author Javier Vazquez; J. Kevin O'Regan; Maria Vanrell; Graham D. Finlayson
Title A new spectrally sharpened basis to predict colour naming, unique hues, and hue cancellation Type Journal Article
Year 2012 Publication Journal of Vision Abbreviated Journal VSS
Volume 12 Issue (up) 6 (7) Pages 1-14
Keywords
Abstract When light is reflected off a surface, there is a linear relation between the three human photoreceptor responses to the incoming light and the three photoreceptor responses to the reflected light. Different colored surfaces have different linear relations. Recently, Philipona and O'Regan (2006) showed that when this relation is singular in a mathematical sense, then the surface is perceived as having a highly nameable color. Furthermore, white light reflected by that surface is perceived as corresponding precisely to one of the four psychophysically measured unique hues. However, Philipona and O'Regan's approach seems unrelated to classical psychophysical models of color constancy. In this paper we make this link. We begin by transforming cone sensors to spectrally sharpened counterparts. In sharp color space, illumination change can be modeled by simple von Kries type scalings of response values within each of the spectrally sharpened response channels. In this space, Philipona and O'Regan's linear relation is captured by a simple Land-type color designator defined by dividing reflected light by incident light. This link between Philipona and O'Regan's theory and Land's notion of color designator gives the model biological plausibility. We then show that Philipona and O'Regan's singular surfaces are surfaces which are very close to activating only one or only two of such newly defined spectrally sharpened sensors, instead of the usual three. Closeness to zero is quantified in a new simplified measure of singularity which is also shown to relate to the chromaticness of colors. As in Philipona and O'Regan's original work, our new theory accounts for a large variety of psychophysical color data.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes CIC Approved no
Call Number Admin @ si @ VOV2012 Serial 1998
Permanent link to this record
 

 
Author Ferran Poveda; Enric Marti; Debora Gil; Francesc Carreras; Manel Ballester
Title Helical Structure of Ventricular Anatomy by Diffusion Tensor Cardiac MR Tractography Type Journal Article
Year 2012 Publication Journal of American College of Cardiology Abbreviated Journal JACC
Volume 5 Issue (up) 7 Pages 754-755
Keywords
Abstract It is widely accepted that myocardial fiber architecture plays a critical role in myocardial contractility and relaxation (1). However, there is a lack of consensus about the distribution of the myocardial fibers and their spatial arrangement in the left and right ventricles. An understanding of the cardiac architecture should benefit the ventricular functional assessment, left ventricular reconstructive surgery planning, or resynchronization therapy in heart failure. Researchers have proposed several conceptual models to describe the architecture of the heart, ranging from gross dissection to histological presentation. The cardiac mesh model (2) proposes that the myocytes are arranged longitudinally and radially change their angulation along the myocardial depth. By contrast, the helical ventricular myocardial model states that the ventricular myocardium is a continuous anatomical helical layout of myocardial fibers (1
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1936-878X ISBN Medium
Area Expedition Conference
Notes IAM Approved no
Call Number IAM @ iam @ PMG2012 Serial 1985
Permanent link to this record
 

 
Author Graham D. Finlayson; Javier Vazquez; Sabine Süsstrunk; Maria Vanrell
Title Spectral sharpening by spherical sampling Type Journal Article
Year 2012 Publication Journal of the Optical Society of America A Abbreviated Journal JOSA A
Volume 29 Issue (up) 7 Pages 1199-1210
Keywords
Abstract There are many works in color that assume illumination change can be modeled by multiplying sensor responses by individual scaling factors. The early research in this area is sometimes grouped under the heading “von Kries adaptation”: the scaling factors are applied to the cone responses. In more recent studies, both in psychophysics and in computational analysis, it has been proposed that scaling factors should be applied to linear combinations of the cones that have narrower support: they should be applied to the so-called “sharp sensors.” In this paper, we generalize the computational approach to spectral sharpening in three important ways. First, we introduce spherical sampling as a tool that allows us to enumerate in a principled way all linear combinations of the cones. This allows us to, second, find the optimal sharp sensors that minimize a variety of error measures including CIE Delta E (previous work on spectral sharpening minimized RMS) and color ratio stability. Lastly, we extend the spherical sampling paradigm to the multispectral case. Here the objective is to model the interaction of light and surface in terms of color signal spectra. Spherical sampling is shown to improve on the state of the art.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1084-7529 ISBN Medium
Area Expedition Conference
Notes CIC Approved no
Call Number Admin @ si @ FVS2012 Serial 2000
Permanent link to this record
 

 
Author Noha Elfiky; Jordi Gonzalez; Xavier Roca
Title Compact and Adaptive Spatial Pyramids for Scene Recognition Type Journal Article
Year 2012 Publication Image and Vision Computing Abbreviated Journal IMAVIS
Volume 30 Issue (up) 8 Pages 492–500
Keywords
Abstract Most successful approaches on scenerecognition tend to efficiently combine global image features with spatial local appearance and shape cues. On the other hand, less attention has been devoted for studying spatial texture features within scenes. Our method is based on the insight that scenes can be seen as a composition of micro-texture patterns. This paper analyzes the role of texture along with its spatial layout for scenerecognition. However, one main drawback of the resulting spatial representation is its huge dimensionality. Hence, we propose a technique that addresses this problem by presenting a compactSpatialPyramid (SP) representation. The basis of our compact representation, namely, CompactAdaptiveSpatialPyramid (CASP) consists of a two-stages compression strategy. This strategy is based on the Agglomerative Information Bottleneck (AIB) theory for (i) compressing the least informative SP features, and, (ii) automatically learning the most appropriate shape for each category. Our method exceeds the state-of-the-art results on several challenging scenerecognition data sets.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ISE Approved no
Call Number Admin @ si @ EGR2012 Serial 2004
Permanent link to this record
 

 
Author Laura Igual; Joan Carles Soliva; Sergio Escalera; Roger Gimeno; Oscar Vilarroya; Petia Radeva
Title Automatic Brain Caudate Nuclei Segmentation and Classification in Diagnostic of Attention-Deficit/Hyperactivity Disorder Type Journal Article
Year 2012 Publication Computerized Medical Imaging and Graphics Abbreviated Journal CMIG
Volume 36 Issue (up) 8 Pages 591-600
Keywords Automatic caudate segmentation; Attention-Deficit/Hyperactivity Disorder; Diagnostic test; Machine learning; Decision stumps; Dissociated dipoles
Abstract We present a fully automatic diagnostic imaging test for Attention-Deficit/Hyperactivity Disorder diagnosis assistance based on previously found evidences of caudate nucleus volumetric abnormalities. The proposed method consists of different steps: a new automatic method for external and internal segmentation of caudate based on Machine Learning methodologies; the definition of a set of new volume relation features, 3D Dissociated Dipoles, used for caudate representation and classification. We separately validate the contributions using real data from a pediatric population and show precise internal caudate segmentation and discrimination power of the diagnostic test, showing significant performance improvements in comparison to other state-of-the-art methods.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes OR; HuPBA; MILAB Approved no
Call Number Admin @ si @ ISE2012 Serial 2143
Permanent link to this record
 

 
Author R. Valenti; Theo Gevers
Title Accurate Eye Center Location through Invariant Isocentric Patterns Type Journal Article
Year 2012 Publication IEEE Transaction on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI
Volume 34 Issue (up) 9 Pages 1785-1798
Keywords
Abstract Impact factor 2010: 5.308
Impact factor 2011/12?: 5.96
Locating the center of the eyes allows for valuable information to be captured and used in a wide range of applications. Accurate eye center location can be determined using commercial eye-gaze trackers, but additional constraints and expensive hardware make these existing solutions unattractive and impossible to use on standard (i.e., visible wavelength), low-resolution images of eyes. Systems based solely on appearance are proposed in the literature, but their accuracy does not allow us to accurately locate and distinguish eye centers movements in these low-resolution settings. Our aim is to bridge this gap by locating the center of the eye within the area of the pupil on low-resolution images taken from a webcam or a similar device. The proposed method makes use of isophote properties to gain invariance to linear lighting changes (contrast and brightness), to achieve in-plane rotational invariance, and to keep low-computational costs. To further gain scale invariance, the approach is applied to a scale space pyramid. In this paper, we extensively test our approach for its robustness to changes in illumination, head pose, scale, occlusion, and eye rotation. We demonstrate that our system can achieve a significant improvement in accuracy over state-of-the-art techniques for eye center location in standard low-resolution imagery.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0162-8828 ISBN Medium
Area Expedition Conference
Notes ALTRES;ISE Approved no
Call Number Admin @ si @ VaG 2012a Serial 1849
Permanent link to this record
 

 
Author Jon Almazan; Alicia Fornes; Ernest Valveny
Title A non-rigid appearance model for shape description and recognition Type Journal Article
Year 2012 Publication Pattern Recognition Abbreviated Journal PR
Volume 45 Issue (up) 9 Pages 3105--3113
Keywords Shape recognition; Deformable models; Shape modeling; Hand-drawn recognition
Abstract In this paper we describe a framework to learn a model of shape variability in a set of patterns. The framework is based on the Active Appearance Model (AAM) and permits to combine shape deformations with appearance variability. We have used two modifications of the Blurred Shape Model (BSM) descriptor as basic shape and appearance features to learn the model. These modifications permit to overcome the rigidity of the original BSM, adapting it to the deformations of the shape to be represented. We have applied this framework to representation and classification of handwritten digits and symbols. We show that results of the proposed methodology outperform the original BSM approach.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-3203 ISBN Medium
Area Expedition Conference
Notes DAG Approved no
Call Number DAG @ dag @ AFV2012 Serial 1982
Permanent link to this record
 

 
Author Jaume Gibert; Ernest Valveny; Horst Bunke
Title Graph Embedding in Vector Spaces by Node Attribute Statistics Type Journal Article
Year 2012 Publication Pattern Recognition Abbreviated Journal PR
Volume 45 Issue (up) 9 Pages 3072-3083
Keywords Structural pattern recognition; Graph embedding; Data clustering; Graph classification
Abstract Graph-based representations are of broad use and applicability in pattern recognition. They exhibit, however, a major drawback with regards to the processing tools that are available in their domain. Graphembedding into vectorspaces is a growing field among the structural pattern recognition community which aims at providing a feature vector representation for every graph, and thus enables classical statistical learning machinery to be used on graph-based input patterns. In this work, we propose a novel embedding methodology for graphs with continuous nodeattributes and unattributed edges. The approach presented in this paper is based on statistics of the node labels and the edges between them, based on their similarity to a set of representatives. We specifically deal with an important issue of this methodology, namely, the selection of a suitable set of representatives. In an experimental evaluation, we empirically show the advantages of this novel approach in the context of different classification problems using several databases of graphs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-3203 ISBN Medium
Area Expedition Conference
Notes DAG Approved no
Call Number Admin @ si @ GVB2012a Serial 1992
Permanent link to this record
 

 
Author Jorge Bernal; F. Javier Sanchez; Fernando Vilariño
Title Towards Automatic Polyp Detection with a Polyp Appearance Model Type Journal Article
Year 2012 Publication Pattern Recognition Abbreviated Journal PR
Volume 45 Issue (up) 9 Pages 3166-3182
Keywords Colonoscopy,PolypDetection,RegionSegmentation,SA-DOVA descriptot
Abstract This work aims at the automatic polyp detection by using a model of polyp appearance in the context of the analysis of colonoscopy videos. Our method consists of three stages: region segmentation, region description and region classification. The performance of our region segmentation method guarantees that if a polyp is present in the image, it will be exclusively and totally contained in a single region. The output of the algorithm also defines which regions can be considered as non-informative. We define as our region descriptor the novel Sector Accumulation-Depth of Valleys Accumulation (SA-DOVA), which provides a necessary but not sufficient condition for the polyp presence. Finally, we classify our segmented regions according to the maximal values of the SA-DOVA descriptor. Our preliminary classification results are promising, especially when classifying those parts of the image that do not contain a polyp inside.
Address
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-3203 ISBN Medium
Area 800 Expedition Conference IbPRIA
Notes MV;SIAI Approved no
Call Number Admin @ si @ BSV2012; IAM @ iam Serial 1997
Permanent link to this record
 

 
Author Mario Hernandez; Joao Sanchez; Jordi Vitria
Title Selected papers from Iberian Conference on Pattern Recognition and Image Analysis Type Book Whole
Year 2012 Publication Pattern Recognition Abbreviated Journal
Volume 45 Issue (up) 9 Pages 3047-3582
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-3203 ISBN Medium
Area Expedition Conference
Notes OR;MV Approved no
Call Number Admin @ si @ HSV2012 Serial 2069
Permanent link to this record
 

 
Author Cristhian Aguilera; Fernando Barrera; Felipe Lumbreras; Angel Sappa; Ricardo Toledo
Title Multispectral Image Feature Points Type Journal Article
Year 2012 Publication Sensors Abbreviated Journal SENS
Volume 12 Issue (up) 9 Pages 12661-12672
Keywords multispectral image descriptor; color and infrared images; feature point descriptor
Abstract Far-Infrared and Visible Spectrum images. It allows matching interest points on images of the same scene but acquired in different spectral bands. Initially, points of interest are detected on both images through a SIFT-like based scale space representation. Then, these points are characterized using an Edge Oriented Histogram (EOH) descriptor. Finally, points of interest from multispectral images are matched by finding nearest couples using the information from the descriptor. The provided experimental results and comparisons with similar methods show both the validity of the proposed approach as well as the improvements it offers with respect to the current state-of-the-art.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ADAS Approved no
Call Number Admin @ si @ ABL2012 Serial 2154
Permanent link to this record
 

 
Author Xavier Otazu; Olivier Penacchio; Laura Dempere-Marco
Title Brightness induction by contextual influences in V1: a neurodynamical account Type Abstract
Year 2012 Publication Journal of Vision Abbreviated Journal VSS
Volume 12 Issue (up) 9 Pages
Keywords
Abstract Brightness induction is the modulation of the perceived intensity of an area by the luminance of surrounding areas and reveals fundamental properties of neural organization in the visual system. Several phenomenological models have been proposed that successfully account for psychophysical data (Pessoa et al. 1995, Blakeslee and McCourt 2004, Barkan et al. 2008, Otazu et al. 2008).
Neurophysiological evidence suggests that brightness information is explicitly represented in V1 and neuronal response modulations have been observed followingluminance changes outside their receptive fields (Rossi and Paradiso, 1999).
In this work we investigate possible neural mechanisms that offer a plausible explanation for such effects. To this end, we consider the model by Z.Li (1999) which is based on biological data and focuses on the part of V1 responsible for contextual influences, namely, layer 2–3 pyramidal cells, interneurons, and horizontal intracortical connections. This model has proven to account for phenomena such as contour detection and preattentive segmentation, which share with brightness induction the relevant effect of contextual influences. In our model, the input to the network is derived from a complete multiscale and multiorientation wavelet decomposition which makes it possible to recover an image reflecting the perceived intensity. The proposed model successfully accounts for well known pyschophysical effects (among them: the White's and modified White's effects, the Todorović, Chevreul, achromatic ring patterns, and grating induction effects). Our work suggests that intra-cortical interactions in the primary visual cortex could partially explain perceptual brightness induction effects and reveals how a common general architecture may account for several different fundamental processes emerging early in the visual pathway.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes CIC Approved no
Call Number Admin @ si @ OPD2012b Serial 2178
Permanent link to this record
 

 
Author Susana Alvarez; Anna Salvatella; Maria Vanrell; Xavier Otazu
Title Low-dimensional and Comprehensive Color Texture Description Type Journal Article
Year 2012 Publication Computer Vision and Image Understanding Abbreviated Journal CVIU
Volume 116 Issue (up) I Pages 54-67
Keywords
Abstract Image retrieval can be dealt by combining standard descriptors, such as those of MPEG-7, which are defined independently for each visual cue (e.g. SCD or CLD for Color, HTD for texture or EHD for edges).
A common problem is to combine similarities coming from descriptors representing different concepts in different spaces. In this paper we propose a color texture description that bypasses this problem from its inherent definition. It is based on a low dimensional space with 6 perceptual axes. Texture is described in a 3D space derived from a direct implementation of the original Julesz’s Texton theory and color is described in a 3D perceptual space. This early fusion through the blob concept in these two bounded spaces avoids the problem and allows us to derive a sparse color-texture descriptor that achieves similar performance compared to MPEG-7 in image retrieval. Moreover, our descriptor presents comprehensive qualities since it can also be applied either in segmentation or browsing: (a) a dense image representation is defined from the descriptor showing a reasonable performance in locating texture patterns included in complex images; and (b) a vocabulary of basic terms is derived to build an intermediate level descriptor in natural language improving browsing by bridging semantic gap
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1077-3142 ISBN Medium
Area Expedition Conference
Notes CAT;CIC Approved no
Call Number Admin @ si @ ASV2012 Serial 1827
Permanent link to this record
 

 
Author Patricia Marquez; Debora Gil ; Aura Hernandez-Sabate
Title Error Analysis for Lucas-Kanade Based Schemes Type Conference Article
Year 2012 Publication 9th International Conference on Image Analysis and Recognition Abbreviated Journal
Volume 7324 Issue (up) I Pages 184-191
Keywords Optical flow, Confidence measure, Lucas-Kanade, Cardiac Magnetic Resonance
Abstract Optical flow is a valuable tool for motion analysis in medical imaging sequences. A reliable application requires determining the accuracy of the computed optical flow. This is a main challenge given the absence of ground truth in medical sequences. This paper presents an error analysis of Lucas-Kanade schemes in terms of intrinsic design errors and numerical stability of the algorithm. Our analysis provides a confidence measure that is naturally correlated to the accuracy of the flow field. Our experiments show the higher predictive value of our confidence measure compared to existing measures.
Address Aveiro, Portugal
Corporate Author Thesis
Publisher Springer-Verlag Berlin Heidelberg Place of Publication Editor
Language english Summary Language Original Title
Series Editor Campilho, Aurélio and Kamel, Mohamed Series Title Lecture Notes in Computer Science Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN 0302-9743 ISBN 978-3-642-31294-6 Medium
Area Expedition Conference ICIAR
Notes IAM Approved no
Call Number IAM @ iam @ MGH2012a Serial 1899
Permanent link to this record
 

 
Author Fernando Barrera; Felipe Lumbreras; Angel Sappa
Title Evaluation of Similarity Functions in Multimodal Stereo Type Conference Article
Year 2012 Publication 9th International Conference on Image Analysis and Recognition Abbreviated Journal
Volume 7324 Issue (up) I Pages 320-329
Keywords Aveiro, Portugal
Abstract This paper presents an evaluation framework for multimodal stereo matching, which allows to compare the performance of four similarity functions. Additionally, it presents details of a multimodal stereo head that supply thermal infrared and color images, as well as, aspects of its calibration and rectification. The pipeline includes a novel method for the disparity selection, which is suitable for evaluating the similarity functions. Finally, a benchmark for comparing different initializations of the proposed framework is presented. Similarity functions are based on mutual information, gradient orientation and scale space representations. Their evaluation is performed using two metrics: i) disparity error, and ii) number of correct matches on planar regions. In addition to the proposed evaluation, the current paper also shows that 3D sparse representations can be recovered from such a multimodal stereo head.
Address
Corporate Author Thesis
Publisher Springer Berlin Heidelberg Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN 0302-9743 ISBN 978-3-642-31294-6 Medium
Area Expedition Conference ICIAR
Notes ADAS Approved no
Call Number BLS2012a Serial 2014
Permanent link to this record