|   | 
Details
   web
Records Links
Author Fahad Shahbaz Khan; Muhammad Anwer Rao; Joost Van de Weijer; Andrew Bagdanov; Maria Vanrell; Antonio Lopez edit   pdf
url  doi
isbn  openurl
Title Color Attributes for Object Detection Type Conference Article
Year 2012 Publication 25th IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
Volume Issue Pages 3306-3313  
Keywords pedestrian detection  
Abstract State-of-the-art object detectors typically use shape information as a low level feature representation to capture the local structure of an object. This paper shows that early fusion of shape and color, as is popular in image classification,
leads to a significant drop in performance for object detection. Moreover, such approaches also yields suboptimal results for object categories with varying importance of color and shape.
In this paper we propose the use of color attributes as an explicit color representation for object detection. Color attributes are compact, computationally efficient, and when combined with traditional shape features provide state-ofthe-
art results for object detection. Our method is tested on the PASCAL VOC 2007 and 2009 datasets and results clearly show that our method improves over state-of-the-art techniques despite its simplicity. We also introduce a new dataset consisting of cartoon character images in which color plays a pivotal role. On this dataset, our approach yields a significant gain of 14% in mean AP over conventional state-of-the-art methods.
 
Address Providence; Rhode Island; USA;  
Corporate Author Thesis  
Publisher IEEE Xplore Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN (up) 1063-6919 ISBN 978-1-4673-1226-4 Medium  
Area Expedition Conference CVPR  
Notes ADAS; CIC; Approved no  
Call Number Admin @ si @ KRW2012 Serial 1935  
Permanent link to this record
 

 
Author Naila Murray; Luca Marchesotti; Florent Perronnin edit   pdf
url  doi
isbn  openurl
Title AVA: A Large-Scale Database for Aesthetic Visual Analysis Type Conference Article
Year 2012 Publication 25th IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
Volume Issue Pages 2408-2415  
Keywords  
Abstract With the ever-expanding volume of visual content available, the ability to organize and navigate such content by aesthetic preference is becoming increasingly important. While still in its nascent stage, research into computational models of aesthetic preference already shows great potential. However, to advance research, realistic, diverse and challenging databases are needed. To this end, we introduce a new large-scale database for conducting Aesthetic Visual Analysis: AVA. It contains over 250,000 images along with a rich variety of meta-data including a large number of aesthetic scores for each image, semantic labels for over 60 categories as well as labels related to photographic style. We show the advantages of AVA with respect to existing databases in terms of scale, diversity, and heterogeneity of annotations. We then describe several key insights into aesthetic preference afforded by AVA. Finally, we demonstrate, through three applications, how the large scale of AVA can be leveraged to improve performance on existing preference tasks  
Address Providence, Rhode Islan  
Corporate Author Thesis  
Publisher IEEE Xplore Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN (up) 1063-6919 ISBN 978-1-4673-1226-4 Medium  
Area Expedition Conference CVPR  
Notes CIC Approved no  
Call Number Admin @ si @ MMP2012a Serial 2025  
Permanent link to this record
 

 
Author Marc Serra; Olivier Penacchio; Robert Benavente; Maria Vanrell edit   pdf
url  doi
isbn  openurl
Title Names and Shades of Color for Intrinsic Image Estimation Type Conference Article
Year 2012 Publication 25th IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
Volume Issue Pages 278-285  
Keywords  
Abstract In the last years, intrinsic image decomposition has gained attention. Most of the state-of-the-art methods are based on the assumption that reflectance changes come along with strong image edges. Recently, user intervention in the recovery problem has proved to be a remarkable source of improvement. In this paper, we propose a novel approach that aims to overcome the shortcomings of pure edge-based methods by introducing strong surface descriptors, such as the color-name descriptor which introduces high-level considerations resembling top-down intervention. We also use a second surface descriptor, termed color-shade, which allows us to include physical considerations derived from the image formation model capturing gradual color surface variations. Both color cues are combined by means of a Markov Random Field. The method is quantitatively tested on the MIT ground truth dataset using different error metrics, achieving state-of-the-art performance.  
Address Providence, Rhode Island  
Corporate Author Thesis  
Publisher IEEE Xplore Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN (up) 1063-6919 ISBN 978-1-4673-1226-4 Medium  
Area Expedition Conference CVPR  
Notes CIC Approved no  
Call Number Admin @ si @ SPB2012 Serial 2026  
Permanent link to this record
 

 
Author Rahat Khan; Joost Van de Weijer; Fahad Shahbaz Khan; Damien Muselet; christophe Ducottet; Cecile Barat edit   pdf
doi  openurl
Title Discriminative Color Descriptors Type Conference Article
Year 2013 Publication IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
Volume Issue Pages 2866 - 2873  
Keywords  
Abstract Color description is a challenging task because of large variations in RGB values which occur due to scene accidental events, such as shadows, shading, specularities, illuminant color changes, and changes in viewing geometry. Traditionally, this challenge has been addressed by capturing the variations in physics-based models, and deriving invariants for the undesired variations. The drawback of this approach is that sets of distinguishable colors in the original color space are mapped to the same value in the photometric invariant space. This results in a drop of discriminative power of the color description. In this paper we take an information theoretic approach to color description. We cluster color values together based on their discriminative power in a classification problem. The clustering has the explicit objective to minimize the drop of mutual information of the final representation. We show that such a color description automatically learns a certain degree of photometric invariance. We also show that a universal color representation, which is based on other data sets than the one at hand, can obtain competing performance. Experiments show that the proposed descriptor outperforms existing photometric invariants. Furthermore, we show that combined with shape description these color descriptors obtain excellent results on four challenging datasets, namely, PASCAL VOC 2007, Flowers-102, Stanford dogs-120 and Birds-200.  
Address Portland; Oregon; June 2013  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN (up) 1063-6919 ISBN Medium  
Area Expedition Conference CVPR  
Notes CIC; 600.048 Approved no  
Call Number Admin @ si @ KWK2013a Serial 2262  
Permanent link to this record
 

 
Author Susana Alvarez; Anna Salvatella; Maria Vanrell; Xavier Otazu edit   pdf
url  doi
openurl 
Title Low-dimensional and Comprehensive Color Texture Description Type Journal Article
Year 2012 Publication Computer Vision and Image Understanding Abbreviated Journal CVIU  
Volume 116 Issue I Pages 54-67  
Keywords  
Abstract Image retrieval can be dealt by combining standard descriptors, such as those of MPEG-7, which are defined independently for each visual cue (e.g. SCD or CLD for Color, HTD for texture or EHD for edges).
A common problem is to combine similarities coming from descriptors representing different concepts in different spaces. In this paper we propose a color texture description that bypasses this problem from its inherent definition. It is based on a low dimensional space with 6 perceptual axes. Texture is described in a 3D space derived from a direct implementation of the original Julesz’s Texton theory and color is described in a 3D perceptual space. This early fusion through the blob concept in these two bounded spaces avoids the problem and allows us to derive a sparse color-texture descriptor that achieves similar performance compared to MPEG-7 in image retrieval. Moreover, our descriptor presents comprehensive qualities since it can also be applied either in segmentation or browsing: (a) a dense image representation is defined from the descriptor showing a reasonable performance in locating texture patterns included in complex images; and (b) a vocabulary of basic terms is derived to build an intermediate level descriptor in natural language improving browsing by bridging semantic gap
 
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN (up) 1077-3142 ISBN Medium  
Area Expedition Conference  
Notes CAT;CIC Approved no  
Call Number Admin @ si @ ASV2012 Serial 1827  
Permanent link to this record
 

 
Author Graham D. Finlayson; Javier Vazquez; Sabine Süsstrunk; Maria Vanrell edit   pdf
url  doi
openurl 
Title Spectral sharpening by spherical sampling Type Journal Article
Year 2012 Publication Journal of the Optical Society of America A Abbreviated Journal JOSA A  
Volume 29 Issue 7 Pages 1199-1210  
Keywords  
Abstract There are many works in color that assume illumination change can be modeled by multiplying sensor responses by individual scaling factors. The early research in this area is sometimes grouped under the heading “von Kries adaptation”: the scaling factors are applied to the cone responses. In more recent studies, both in psychophysics and in computational analysis, it has been proposed that scaling factors should be applied to linear combinations of the cones that have narrower support: they should be applied to the so-called “sharp sensors.” In this paper, we generalize the computational approach to spectral sharpening in three important ways. First, we introduce spherical sampling as a tool that allows us to enumerate in a principled way all linear combinations of the cones. This allows us to, second, find the optimal sharp sensors that minimize a variety of error measures including CIE Delta E (previous work on spectral sharpening minimized RMS) and color ratio stability. Lastly, we extend the spherical sampling paradigm to the multispectral case. Here the objective is to model the interaction of light and surface in terms of color signal spectra. Spherical sampling is shown to improve on the state of the art.  
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN (up) 1084-7529 ISBN Medium  
Area Expedition Conference  
Notes CIC Approved no  
Call Number Admin @ si @ FVS2012 Serial 2000  
Permanent link to this record
 

 
Author Alicia Fornes; Josep Llados; Gemma Sanchez; Xavier Otazu; Horst Bunke edit  doi
openurl 
Title A Combination of Features for Symbol-Independent Writer Identification in Old Music Scores Type Journal Article
Year 2010 Publication International Journal on Document Analysis and Recognition Abbreviated Journal IJDAR  
Volume 13 Issue 4 Pages 243-259  
Keywords  
Abstract The aim of writer identification is determining the writer of a piece of handwriting from a set of writers. In this paper, we present an architecture for writer identification in old handwritten music scores. Even though an important amount of music compositions contain handwritten text, the aim of our work is to use only music notation to determine the author. The main contribution is therefore the use of features extracted from graphical alphabets. Our proposal consists in combining the identification results of two different approaches, based on line and textural features. The steps of the ensemble architecture are the following. First of all, the music sheet is preprocessed for removing the staff lines. Then, music lines and texture images are generated for computing line features and textural features. Finally, the classification results are combined for identifying the writer. The proposed method has been tested on a database of old music scores from the seventeenth to nineteenth centuries, achieving a recognition rate of about 92% with 20 writers.  
Address  
Corporate Author Thesis  
Publisher Springer-Verlag Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN (up) 1433-2833 ISBN Medium  
Area Expedition Conference  
Notes DAG; CAT;CIC Approved no  
Call Number FLS2010b Serial 1319  
Permanent link to this record
 

 
Author Christophe Rigaud; Dimosthenis Karatzas; Joost Van de Weijer; Jean-Christophe Burie; Jean-Marc Ogier edit   pdf
doi  openurl
Title An active contour model for speech balloon detection in comics Type Conference Article
Year 2013 Publication 12th International Conference on Document Analysis and Recognition Abbreviated Journal  
Volume Issue Pages 1240-1244  
Keywords  
Abstract Comic books constitute an important cultural heritage asset in many countries. Digitization combined with subsequent comic book understanding would enable a variety of new applications, including content-based retrieval and content retargeting. Document understanding in this domain is challenging as comics are semi-structured documents, combining semantically important graphical and textual parts. Few studies have been done in this direction. In this work we detail a novel approach for closed and non-closed speech balloon localization in scanned comic book pages, an essential step towards a fully automatic comic book understanding. The approach is compared with existing methods for closed balloon localization found in the literature and results are presented.  
Address washington; USA; August 2013  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN (up) 1520-5363 ISBN Medium  
Area Expedition Conference ICDAR  
Notes DAG; CIC; 600.056 Approved no  
Call Number Admin @ si @ RKW2013a Serial 2260  
Permanent link to this record
 

 
Author Alicia Fornes; Xavier Otazu; Josep Llados edit   pdf
doi  openurl
Title Show through cancellation and image enhancement by multiresolution contrast processing Type Conference Article
Year 2013 Publication 12th International Conference on Document Analysis and Recognition Abbreviated Journal  
Volume Issue Pages 200-204  
Keywords  
Abstract Historical documents suffer from different types of degradation and noise such as background variation, uneven illumination or dark spots. In case of double-sided documents, another common problem is that the back side of the document usually interferes with the front side because of the transparency of the document or ink bleeding. This effect is called the show through phenomenon. Many methods are developed to solve these problems, and in the case of show-through, by scanning and matching both the front and back sides of the document. In contrast, our approach is designed to use only one side of the scanned document. We hypothesize that show-trough are low contrast components, while foreground components are high contrast ones. A Multiresolution Contrast (MC) decomposition is presented in order to estimate the contrast of features at different spatial scales. We cancel the show-through phenomenon by thresholding these low contrast components. This decomposition is also able to enhance the image removing shadowed areas by weighting spatial scales. Results show that the enhanced images improve the readability of the documents, allowing scholars both to recover unreadable words and to solve ambiguities.  
Address Washington; USA; August 2013  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN (up) 1520-5363 ISBN Medium  
Area Expedition Conference ICDAR  
Notes DAG; 602.006; 600.045; 600.061; 600.052;CIC Approved no  
Call Number Admin @ si @ FOL2013 Serial 2241  
Permanent link to this record
 

 
Author Olivier Penacchio edit   pdf
url  doi
openurl 
Title Mixed Hodge Structures and Equivariant Sheaves on the Projective Plane Type Journal Article
Year 2011 Publication Mathematische Nachrichten Abbreviated Journal MN  
Volume 284 Issue 4 Pages 526-542  
Keywords Mixed Hodge structures, equivariant sheaves, MSC (2010) Primary: 14C30, Secondary: 14F05, 14M25  
Abstract We describe an equivalence of categories between the category of mixed Hodge structures and a category of equivariant vector bundles on a toric model of the complex projective plane which verify some semistability condition. We then apply this correspondence to define an invariant which generalizes the notion of R-split mixed Hodge structure and give calculations for the first group of cohomology of possibly non smooth or non-complete curves of genus 0 and 1. Finally, we describe some extension groups of mixed Hodge structures in terms of equivariant extensions of coherent sheaves. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim  
Address  
Corporate Author Thesis  
Publisher WILEY-VCH Verlag Place of Publication Editor R. Mennicken  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN (up) 1522-2616 ISBN Medium  
Area Expedition Conference  
Notes CIC Approved no  
Call Number Admin @ si @ Pen2011 Serial 1721  
Permanent link to this record
 

 
Author Jordi Roca; A.Owen; G.Jordan; Y.Ling; C. Alejandro Parraga; A.Hurlbert edit  url
doi  openurl
Title Inter-individual Variations in Color Naming and the Structure of 3D Color Space Type Abstract
Year 2011 Publication Journal of Vision Abbreviated Journal VSS  
Volume 12 Issue 2 Pages 166  
Keywords  
Abstract 36.307
Many everyday behavioural uses of color vision depend on color naming ability, which is neither measured nor predicted by most standardized tests of color vision, for either normal or anomalous color vision. Here we demonstrate a new method to quantify color naming ability by deriving a compact computational description of individual 3D color spaces. Methods: Individual observers underwent standardized color vision diagnostic tests (including anomaloscope testing) and a series of custom-made color naming tasks using 500 distinct color samples, either CRT stimuli (“light”-based) or Munsell chips (“surface”-based), with both forced- and free-choice color naming paradigms. For each subject, we defined his/her color solid as the set of 3D convex hulls computed for each basic color category from the relevant collection of categorised points in perceptually uniform CIELAB space. From the parameters of the convex hulls, we derived several indices to characterise the 3D structure of the color solid and its inter-individual variations. Using a reference group of 25 normal trichromats (NT), we defined the degree of normality for the shape, location and overlap of each color region, and the extent of “light”-“surface” agreement. Results: Certain features of color perception emerge from analysis of the average NT color solid, e.g.: (1) the white category is slightly shifted towards blue; and (2) the variability in category border location across NT subjects is asymmetric across color space, with least variability in the blue/green region. Comparisons between individual and average NT indices reveal specific naming “deficits”, e.g.: (1) Category volumes for white, green, brown and grey are expanded for anomalous trichromats and dichromats; and (2) the focal structure of color space is disrupted more in protanopia than other forms of anomalous color vision. The indices both capture the structure of subjective color spaces and allow us to quantify inter-individual differences in color naming ability.
 
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN (up) 1534-7362 ISBN Medium  
Area Expedition Conference  
Notes CIC Approved no  
Call Number Admin @ si @ ROJ2011 Serial 1758  
Permanent link to this record
 

 
Author C. Alejandro Parraga; Jordi Roca; Maria Vanrell edit  url
doi  openurl
Title Do Basic Colors Influence Chromatic Adaptation? Type Journal Article
Year 2011 Publication Journal of Vision Abbreviated Journal VSS  
Volume 11 Issue 11 Pages 85  
Keywords  
Abstract Color constancy (the ability to perceive colors relatively stable under different illuminants) is the result of several mechanisms spread across different neural levels and responding to several visual scene cues. It is usually measured by estimating the perceived color of a grey patch under an illuminant change. In this work, we hypothesize whether chromatic adaptation (without a reference white or grey) could be driven by certain colors, specifically those corresponding to the universal color terms proposed by Berlin and Kay (1969). To this end we have developed a new psychophysical paradigm in which subjects adjust the color of a test patch (in CIELab space) to match their memory of the best example of a given color chosen from the universal terms list (grey, red, green, blue, yellow, purple, pink, orange and brown). The test patch is embedded inside a Mondrian image and presented on a calibrated CRT screen inside a dark cabin. All subjects were trained to “recall” their most exemplary colors reliably from memory and asked to always produce the same basic colors when required under several adaptation conditions. These include achromatic and colored Mondrian backgrounds, under a simulated D65 illuminant and several colored illuminants. A set of basic colors were measured for each subject under neutral conditions (achromatic background and D65 illuminant) and used as “reference” for the rest of the experiment. The colors adjusted by the subjects in each adaptation condition were compared to the reference colors under the corresponding illuminant and a “constancy index” was obtained for each of them. Our results show that for some colors the constancy index was better than for grey. The set of best adapted colors in each condition were common to a majority of subjects and were dependent on the chromaticity of the illuminant and the chromatic background considered.  
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN (up) 1534-7362 ISBN Medium  
Area Expedition Conference  
Notes CIC Approved no  
Call Number Admin @ si @ PRV2011 Serial 1759  
Permanent link to this record
 

 
Author Fahad Shahbaz Khan; Joost Van de Weijer; Maria Vanrell edit  url
doi  isbn
openurl 
Title Top-Down Color Attention for Object Recognition Type Conference Article
Year 2009 Publication 12th International Conference on Computer Vision Abbreviated Journal  
Volume Issue Pages 979 - 986  
Keywords  
Abstract Generally the bag-of-words based image representation follows a bottom-up paradigm. The subsequent stages of the process: feature detection, feature description, vocabulary construction and image representation are performed independent of the intentioned object classes to be detected. In such a framework, combining multiple cues such as shape and color often provides below-expected results. This paper presents a novel method for recognizing object categories when using multiple cues by separating the shape and color cue. Color is used to guide attention by means of a top-down category-specific attention map. The color attention map is then further deployed to modulate the shape features by taking more features from regions within an image that are likely to contain an object instance. This procedure leads to a category-specific image histogram representation for each category. Furthermore, we argue that the method combines the advantages of both early and late fusion. We compare our approach with existing methods that combine color and shape cues on three data sets containing varied importance of both cues, namely, Soccer ( color predominance), Flower (color and shape parity), and PASCAL VOC Challenge 2007 (shape predominance). The experiments clearly demonstrate that in all three data sets our proposed framework significantly outperforms the state-of-the-art methods for combining color and shape information.  
Address Kyoto, Japan  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN (up) 1550-5499 ISBN 978-1-4244-4420-5 Medium  
Area Expedition Conference ICCV  
Notes CIC Approved no  
Call Number CAT @ cat @ SWV2009 Serial 1196  
Permanent link to this record
 

 
Author Shida Beigpour; Joost Van de Weijer edit   pdf
url  doi
isbn  openurl
Title Object Recoloring Based on Intrinsic Image Estimation Type Conference Article
Year 2011 Publication 13th IEEE International Conference in Computer Vision Abbreviated Journal  
Volume Issue Pages 327 - 334  
Keywords  
Abstract Object recoloring is one of the most popular photo-editing tasks. The problem of object recoloring is highly under-constrained, and existing recoloring methods limit their application to objects lit by a white illuminant. Application of these methods to real-world scenes lit by colored illuminants, multiple illuminants, or interreflections, results in unrealistic recoloring of objects. In this paper, we focus on the recoloring of single-colored objects presegmented from their background. The single-color constraint allows us to fit a more comprehensive physical model to the object. We demonstrate that this permits us to perform realistic recoloring of objects lit by non-white illuminants, and multiple illuminants. Moreover, the model allows for more realistic handling of illuminant alteration of the scene. Recoloring results captured by uncalibrated cameras demonstrate that the proposed framework obtains realistic recoloring for complex natural images. Furthermore we use the model to transfer color between objects and show that the results are more realistic than existing color transfer methods.  
Address Barcelona  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN (up) 1550-5499 ISBN 978-1-4577-1101-5 Medium  
Area Expedition Conference ICCV  
Notes CIC Approved no  
Call Number Admin @ si @ BeW2011 Serial 1781  
Permanent link to this record
 

 
Author Joost Van de Weijer; Fahad Shahbaz Khan; Marc Masana edit   pdf
doi  isbn
openurl 
Title Interactive Visual and Semantic Image Retrieval Type Book Chapter
Year 2013 Publication Multimodal Interaction in Image and Video Applications Abbreviated Journal  
Volume 48 Issue Pages 31-35  
Keywords  
Abstract One direct consequence of recent advances in digital visual data generation and the direct availability of this information through the World-Wide Web, is a urgent demand for efficient image retrieval systems. The objective of image retrieval is to allow users to efficiently browse through this abundance of images. Due to the non-expert nature of the majority of the internet users, such systems should be user friendly, and therefore avoid complex user interfaces. In this chapter we investigate how high-level information provided by recently developed object recognition techniques can improve interactive image retrieval. Wel apply a bagof- word based image representation method to automatically classify images in a number of categories. These additional labels are then applied to improve the image retrieval system. Next to these high-level semantic labels, we also apply a low-level image description to describe the composition and color scheme of the scene. Both descriptions are incorporated in a user feedback image retrieval setting. The main objective is to show that automatic labeling of images with semantic labels can improve image retrieval results.  
Address  
Corporate Author Thesis  
Publisher Springer Berlin Heidelberg Place of Publication Editor Angel Sappa; Jordi Vitria  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN (up) 1868-4394 ISBN 978-3-642-35931-6 Medium  
Area Expedition Conference  
Notes CIC; 605.203; 600.048 Approved no  
Call Number Admin @ si @ WKC2013 Serial 2284  
Permanent link to this record
 

 
Author Abel Gonzalez-Garcia; Robert Benavente; Olivier Penacchio; Javier Vazquez; Maria Vanrell; C. Alejandro Parraga edit   pdf
doi  isbn
openurl 
Title Coloresia: An Interactive Colour Perception Device for the Visually Impaired Type Book Chapter
Year 2013 Publication Multimodal Interaction in Image and Video Applications Abbreviated Journal  
Volume 48 Issue Pages 47-66  
Keywords  
Abstract A significative percentage of the human population suffer from impairments in their capacity to distinguish or even see colours. For them, everyday tasks like navigating through a train or metro network map becomes demanding. We present a novel technique for extracting colour information from everyday natural stimuli and presenting it to visually impaired users as pleasant, non-invasive sound. This technique was implemented inside a Personal Digital Assistant (PDA) portable device. In this implementation, colour information is extracted from the input image and categorised according to how human observers segment the colour space. This information is subsequently converted into sound and sent to the user via speakers or headphones. In the original implementation, it is possible for the user to send its feedback to reconfigure the system, however several features such as these were not implemented because the current technology is limited.We are confident that the full implementation will be possible in the near future as PDA technology improves.  
Address  
Corporate Author Thesis  
Publisher Springer Berlin Heidelberg Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN (up) 1868-4394 ISBN 978-3-642-35931-6 Medium  
Area Expedition Conference  
Notes CIC; 600.052; 605.203 Approved no  
Call Number Admin @ si @ GBP2013 Serial 2266  
Permanent link to this record
 

 
Author Jaime Moreno; Xavier Otazu edit  doi
isbn  openurl
Title Image compression algorithm based on Hilbert scanning of embedded quadTrees: an introduction of the Hi-SET coder Type Conference Article
Year 2011 Publication IEEE International Conference on Multimedia and Expo Abbreviated Journal  
Volume Issue Pages 1-6  
Keywords  
Abstract In this work we present an effective and computationally simple algorithm for image compression based on Hilbert Scanning of Embedded quadTrees (Hi-SET). It allows to represent an image as an embedded bitstream along a fractal function. Embedding is an important feature of modern image compression algorithms, in this way Salomon in [1, pg. 614] cite that another feature and perhaps a unique one is the fact of achieving the best quality for the number of bits input by the decoder at any point during the decoding. Hi-SET possesses also this latter feature. Furthermore, the coder is based on a quadtree partition strategy, that applied to image transformation structures such as discrete cosine or wavelet transform allows to obtain an energy clustering both in frequency and space. The coding algorithm is composed of three general steps, using just a list of significant pixels. The implementation of the proposed coder is developed for gray-scale and color image compression. Hi-SET compressed images are, on average, 6.20dB better than the ones obtained by other compression techniques based on the Hilbert scanning. Moreover, Hi-SET improves the image quality in 1.39dB and 1.00dB in gray-scale and color compression, respectively, when compared with JPEG2000 coder.  
Address  
Corporate Author Thesis  
Publisher Place of Publication Editor  
Language Summary Language Original Title  
Series Editor Series Title Abbreviated Series Title  
Series Volume Series Issue Edition  
ISSN (up) 1945-7871 ISBN 978-1-61284-348-3 Medium  
Area Expedition Conference ICME  
Notes CIC Approved no  
Call Number Admin @ si @ MoO2011a Serial 2176  
Permanent link to this record