toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Yi Xiao edit  isbn
openurl 
  Title Advancing Vision-based End-to-End Autonomous Driving Type Book Whole
  Year 2023 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract In autonomous driving, artificial intelligence (AI) processes the traffic environment to drive the vehicle to a desired destination. Currently, there are different paradigms that address the development of AI-enabled drivers. On the one hand, we find modular pipelines, which divide the driving task into sub-tasks such as perception, maneuver planning, and control. On the other hand, we find end-to-end driving approaches that attempt to learn the direct mapping of raw data from input sensors to vehicle control signals. The latter are relatively less studied but are gaining popularity as they are less demanding in terms of data labeling. Therefore, in this thesis, our goal is to investigate end-to-end autonomous driving.
We propose to evaluate three approaches to tackle the challenge of end-to-end
autonomous driving. First, we focus on the input, considering adding depth information as complementary to RGB data, in order to mimic the human being’s
ability to estimate the distance to obstacles. Notice that, in the real world, these depth maps can be obtained either from a LiDAR sensor, or a trained monocular
depth estimation module, where human labeling is not needed. Then, based on
the intuition that the latent space of end-to-end driving models encodes relevant
information for driving, we use it as prior knowledge for training an affordancebased driving model. In this case, the trained affordance-based model can achieve good performance while requiring less human-labeled data, and it can provide interpretability regarding driving actions. Finally, we present a new pure vision-based end-to-end driving model termed CIL++, which is trained by imitation learning.
CIL++ leverages modern best practices, such as a large horizontal field of view and
a self-attention mechanism, which are contributing to the agent’s understanding of
the driving scene and bringing a better imitation of human drivers. Using training
data without any human labeling, our model yields almost expert performance in
the CARLA NoCrash benchmark and could rival SOTA models that require large amounts of human-labeled data.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher IMPRIMA Place of Publication Editor Antonio Lopez  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN (up) 978-84-126409-4-6 Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ Xia2023 Serial 3964  
Permanent link to this record
 

 
Author Bonifaz Stuhr edit  isbn
openurl 
  Title Towards Unsupervised Representation Learning: Learning, Evaluating and Transferring Visual Representations Type Book Whole
  Year 2023 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Unsupervised representation learning aims at finding methods that learn representations from data without annotation-based signals. Abstaining from annotations not only leads to economic benefits but may – and to some extent already does – result in advantages regarding the representation’s structure, robustness, and generalizability to different tasks. In the long run, unsupervised methods are expected to surpass their supervised counterparts due to the reduction of human intervention and the inherently more general setup that does not bias the optimization towards an objective originating from specific annotation-based signals. While major advantages of unsupervised representation learning have been recently observed in natural language processing, supervised methods still dominate in vision domains for most tasks. In this dissertation, we contribute to the field of unsupervised (visual) representation learning from three perspectives: (i) Learning representations: We design unsupervised, backpropagation-free Convolutional Self-Organizing Neural Networks (CSNNs) that utilize self-organization- and Hebbian-based learning rules to learn convolutional kernels and masks to achieve deeper backpropagation-free models. Thereby, we observe that backpropagation-based and -free methods can suffer from an objective function mismatch between the unsupervised pretext task and the target task. This mismatch can lead to performance decreases for the target task. (ii) Evaluating representations: We build upon the widely used (non-)linear evaluation protocol to define pretext- and target-objective-independent metrics for measuring the objective function mismatch. With these metrics, we evaluate various pretext and target tasks and disclose dependencies of the objective function mismatch concerning different parts of the training and model setup. (iii) Transferring representations: We contribute CARLANE, the first 3-way sim-to-real domain adaptation benchmark for 2D lane detection. We adopt several well-known unsupervised domain adaptation methods as baselines and propose a method based on prototypical cross-domain self-supervised learning. Finally, we focus on pixel-based unsupervised domain adaptation and contribute a content-consistent unpaired image-to-image translation method that utilizes masks, global and local discriminators, and similarity sampling to mitigate content inconsistencies, as well as feature-attentive denormalization to fuse content-based statistics into the generator stream. In addition, we propose the cKVD metric to incorporate class-specific content inconsistencies into perceptual metrics for measuring translation quality.  
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher IMPRIA Place of Publication Editor Jordi Gonzalez;Jurgen Brauer  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN (up) 978-84-126409-6-0 Medium  
  Area Expedition Conference  
  Notes ISE Approved no  
  Call Number Admin @ si @ Stu2023 Serial 3966  
Permanent link to this record
 

 
Author Daniel Ponsa edit  isbn
openurl 
  Title Model-Based Visual Localisation of Contours and Vehicles Type Book Whole
  Year 2007 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords Phd Thesis  
  Abstract  
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Antonio Lopez;Xavier Roca  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN (up) 978-84-935251-3-2 Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number ADAS @ adas @ Pon2007 Serial 1107  
Permanent link to this record
 

 
Author Francisco Javier Orozco edit  isbn
openurl 
  Title Human Emotion Evaluation on Facial Image Sequences Type Book Whole
  Year 2010 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Psychological evidence has emphasized the importance of affective behaviour understanding due to its high impact in nowadays interaction humans and computers. All
type of affective and behavioural patterns such as gestures, emotions and mental
states are highly displayed through the face, head and body. Therefore, this thesis is
focused to analyse affective behaviours on head and face. To this end, head and facial
movements are encoded by using appearance based tracking methods. Specifically,
a wise combination of deformable models captures rigid and non-rigid movements of
different kinematics; 3D head pose, eyebrows, mouth, eyelids and irises are taken into
account as basis for extracting features from databases of video sequences. This approach combines the strengths of adaptive appearance models, optimization methods
and backtracking techniques.
For about thirty years, computer sciences have addressed the investigation on
human emotions to the automatic recognition of six prototypic emotions suggested
by Darwin and systematized by Paul Ekman in the seventies. The Facial Action
Coding System (FACS) which uses discrete movements of the face (called Action
units or AUs) to code the six facial emotions named anger, disgust, fear, happy-Joy,
sadness and surprise. However, human emotions are much complex patterns that
have not received the same attention from computer scientists.
Simon Baron-Cohen proposed a new taxonomy of emotions and mental states
without a system coding of the facial actions. These 426 affective behaviours are
more challenging for the understanding of human emotions. Beyond of classically
classifying the six basic facial expressions, more subtle gestures, facial actions and
spontaneous emotions are considered here. By assessing confidence on the recognition
results, exploring spatial and temporal relationships of the features, some methods are
combined and enhanced for developing new taxonomy of expressions and emotions.
The objective of this dissertation is to develop a computer vision system, including both facial feature extraction, expression recognition and emotion understanding
by building a bottom-up reasoning process. Building a detailed taxonomy of human
affective behaviours is an interesting challenge for head-face-based image analysis
methods. In this paper, we exploit the strengths of Canonical Correlation Analysis
(CCA) to enhance an on-line head-face tracker. A relationship between head pose and
local facial movements is studied according to their cognitive interpretation on affective expressions and emotions. Active Shape Models are synthesized for AAMs based
on CCA-regression. Head pose and facial actions are fused into a maximally correlated space in order to assess expressiveness, confidence and classification in a CBR system. The CBR solutions are also correlated to the cognitive features, which allow
avoiding exhaustive search when recognizing new head-face features. Subsequently,
Support Vector Machines (SVMs) and Bayesian Networks are applied for learning the
spatial relationships of facial expressions. Similarly, the temporal evolution of facial
expressions, emotion and mental states are analysed based on Factorized Dynamic
Bayesian Networks (FaDBN).
As results, the bottom-up system recognizes six facial expressions, six basic emotions and six mental states, plus enhancing this categorization with confidence assessment at each level, intensity of expressions and a complete taxonomy
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Jordi Gonzalez;Xavier Roca  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN (up) 978-84-936529-3-7 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Admin @ si @ Oro2010 Serial 1335  
Permanent link to this record
 

 
Author David Geronimo edit  isbn
openurl 
  Title A Global Approach to Vision-Based Pedestrian Detection for Advanced Driver Assistance Systems Type Book Whole
  Year 2010 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract At the beginning of the 21th century, traffic accidents have become a major problem not only for developed countries but also for emerging ones. As in other scientific areas in which Artificial Intelligence is becoming a key actor, advanced driver assistance systems, and concretely pedestrian protection systems based on Computer Vision, are becoming a strong topic of research aimed at improving the safety of pedestrians. However, the challenge is of considerable complexity due to the varying appearance of humans (e.g., clothes, size, aspect ratio, shape, etc.), the dynamic nature of on-board systems and the unstructured moving environments that urban scenarios represent. In addition, the required performance is demanding both in terms of computational time and detection rates. In this thesis, instead of focusing on improving specific tasks as it is frequent in the literature, we present a global approach to the problem. Such a global overview starts by the proposal of a generic architecture to be used as a framework both to review the literature and to organize the studied techniques along the thesis. We then focus the research on tasks such as foreground segmentation, object classification and refinement following a general viewpoint and exploring aspects that are not usually analyzed. In order to perform the experiments, we also present a novel pedestrian dataset that consists of three subsets, each one addressed to the evaluation of a different specific task in the system. The results presented in this thesis not only end with a proposal of a pedestrian detection system but also go one step beyond by pointing out new insights, formalizing existing and proposed algorithms, introducing new techniques and evaluating their performance, which we hope will provide new foundations for future research in the area.  
  Address Antonio Lopez;Krystian Mikolajczyk;Jaume Amores;Dariu M. Gavrila;Oriol Pujol;Felipe Lumbreras  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Antonio Lopez;Krystian Mikolajczyk;Jaume Amores;Dariu M. Gavrila;Oriol Pujol;Felipe Lumbreras  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN (up) 978-84-936529-5-1 Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number ADAS @ adas @ Ger2010 Serial 1279  
Permanent link to this record
 

 
Author Carles Fernandez edit  isbn
openurl 
  Title Understanding Image Sequences: the Role of Ontologies in Cognitive Vision Type Book Whole
  Year 2010 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract The increasing ubiquitousness of digital information in our daily lives has positioned
video as a favored information vehicle, and given rise to an astonishing generation of
social media and surveillance footage. This raises a series of technological demands
for automatic video understanding and management, which together with the compromising attentional limitations of human operators, have motivated the research
community to guide its steps towards a better attainment of such capabilities. As
a result, current trends on cognitive vision promise to recognize complex events and
self-adapt to different environments, while managing and integrating several types of
knowledge. Future directions suggest to reinforce the multi-modal fusion of information sources and the communication with end-users.
In this thesis we tackle the problem of recognizing and describing meaningful
events in video sequences from different domains, and communicating the resulting
knowledge to end-users by means of advanced interfaces for human–computer interaction. This problem is addressed by designing the high-level modules of a cognitive
vision framework exploiting ontological knowledge. Ontologies allow us to define the
relevant concepts in a domain and the relationships among them; we prove that the
use of ontologies to organize, centralize, link, and reuse different types of knowledge
is a key factor in the materialization of our objectives.
The proposed framework contributes to: (i) automatically learn the characteristics
of different scenarios in a domain; (ii) reason about uncertain, incomplete, or vague
information from visual –camera’s– or linguistic –end-user’s– inputs; (iii) derive plausible interpretations of complex events from basic spatiotemporal developments; (iv)
facilitate natural interfaces that adapt to the needs of end-users, and allow them to
communicate efficiently with the system at different levels of interaction; and finally,
(v) find mechanisms to guide modeling processes, maintain and extend the resulting
models, and to exploit multimodal resources synergically to enhance the former tasks.
We describe a holistic methodology to achieve these goals. First, the use of prior
taxonomical knowledge is proved useful to guide MAP-MRF inference processes in
the automatic identification of semantic regions, with independence of a particular scenario. Towards the recognition of complex video events, we combine fuzzy
metric-temporal reasoning with SGTs, thus assessing high-level interpretations from
spatiotemporal data. Here, ontological resources like T–Boxes, onomasticons, or factual databases become useful to derive video indexing and retrieval capabilities, and
also to forward highlighted content to smart user interfaces. There, we explore the
application of ontologies to discourse analysis and cognitive linguistic principles, or scene augmentation techniques towards advanced communication by means of natural language dialogs and synthetic visualizations. Ontologies become fundamental to
coordinate, adapt, and reuse the different modules in the system.
The suitability of our ontological framework is demonstrated by a series of applications that especially benefit the field of smart video surveillance, viz. automatic generation of linguistic reports about the content of video sequences in multiple natural
languages; content-based filtering and summarization of these reports; dialogue-based
interfaces to query and browse video contents; automatic learning of semantic regions
in a scenario; and tools to evaluate the performance of components and models in the
system, via simulation and augmented reality.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Jordi Gonzalez;Xavier Roca  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN (up) 978-84-937261-2-6 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Admin @ si @ Fer2010a Serial 1333  
Permanent link to this record
 

 
Author Ivan Huerta edit  isbn
openurl 
  Title Foreground Object Segmentation and Shadow Detection for Video Sequences in Uncontrolled Environments Type Book Whole
  Year 2010 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract This Thesis is mainly divided in two parts. The first one presents a study of motion
segmentation problems. Based on this study, a novel algorithm for mobile-object
segmentation from a static background scene is also presented. This approach is
demonstrated robust and accurate under most of the common problems in motion
segmentation. The second one tackles the problem of shadows in depth. Firstly, a
bottom-up approach based on a chromatic shadow detector is presented to deal with
umbra shadows. Secondly, a top-down approach based on a tracking system has been
developed in order to enhance the chromatic shadow detection.
In our first contribution, a case analysis of motion segmentation problems is presented by taking into account the problems associated with different cues, namely
colour, edge and intensity. Our second contribution is a hybrid architecture which
handles the main problems observed in such a case analysis, by fusing (i) the knowledge from these three cues and (ii) a temporal difference algorithm. On the one hand,
we enhance the colour and edge models to solve both global/local illumination changes
(shadows and highlights) and camouflage in intensity. In addition, local information is
exploited to cope with a very challenging problem such as the camouflage in chroma.
On the other hand, the intensity cue is also applied when colour and edge cues are not
available, such as when beyond the dynamic range. Additionally, temporal difference
is included to segment motion when these three cues are not available, such as that
background not visible during the training period. Lastly, the approach is enhanced
for allowing ghost detection. As a result, our approach obtains very accurate and robust motion segmentation in both indoor and outdoor scenarios, as quantitatively and
qualitatively demonstrated in the experimental results, by comparing our approach
with most best-known state-of-the-art approaches.
Motion Segmentation has to deal with shadows to avoid distortions when detecting
moving objects. Most segmentation approaches dealing with shadow detection are
typically restricted to penumbra shadows. Therefore, such techniques cannot cope
well with umbra shadows. Consequently, umbra shadows are usually detected as part
of moving objects.
Firstly, a bottom-up approach for detection and removal of chromatic moving
shadows in surveillance scenarios is proposed. Secondly, a top-down approach based
on kalman filters to detect and track shadows has been developed in order to enhance
the chromatic shadow detection. In the Bottom-up part, the shadow detection approach applies a novel technique based on gradient and colour models for separating
chromatic moving shadows from moving objects.
Well-known colour and gradient models are extended and improved into an invariant colour cone model and an invariant gradient model, respectively, to perform
automatic segmentation while detecting potential shadows. Hereafter, the regions corresponding to potential shadows are grouped by considering ”a bluish effect” and an
edge partitioning. Lastly, (i) temporal similarities between local gradient structures
and (ii) spatial similarities between chrominance angle and brightness distortions are
analysed for all potential shadow regions in order to finally identify umbra shadows.
In the top-down process, after detection of objects and shadows both are tracked
using Kalman filters, in order to enhance the chromatic shadow detection, when it
fails to detect a shadow. Firstly, this implies a data association between the blobs
(foreground and shadow) and Kalman filters. Secondly, an event analysis of the different data association cases is performed, and occlusion handling is managed by a
Probabilistic Appearance Model (PAM). Based on this association, temporal consistency is looked for the association between foregrounds and shadows and their
respective Kalman Filters. From this association several cases are studied, as a result
lost chromatic shadows are correctly detected. Finally, the tracking results are used
as feedback to improve the shadow and object detection.
Unlike other approaches, our method does not make any a-priori assumptions
about camera location, surface geometries, surface textures, shapes and types of
shadows, objects, and background. Experimental results show the performance and
accuracy of our approach in different shadowed materials and illumination conditions.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Jordi Gonzalez;Xavier Roca  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN (up) 978-84-937261-3-3 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number ISE @ ise @ Hue2010 Serial 1332  
Permanent link to this record
 

 
Author Joan Mas edit  isbn
openurl 
  Title A Syntactic Pattern Recognition Approach based on a Distribution Tolerant Adjacency Grammar and a Spatial Indexed Parser. Application to Sketched Document Recognition Type Book Whole
  Year 2010 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Sketch recognition is a discipline which has gained an increasing interest in the last
20 years. This is due to the appearance of new devices such as PDA, Tablet PC’s
or digital pen & paper protocols. From the wide range of sketched documents we
focus on those that represent structured documents such as: architectural floor-plans,
engineering drawing, UML diagrams, etc. To recognize and understand these kinds
of documents, first we have to recognize the different compounding symbols and then
we have to identify the relations between these elements. From the way that a sketch
is captured, there are two categories: on-line and off-line. On-line input modes refer
to draw directly on a PDA or a Tablet PC’s while off-line input modes refer to scan
a previously drawn sketch.
This thesis is an overlapping of three different areas on Computer Science: Pattern
Recognition, Document Analysis and Human-Computer Interaction. The aim of this
thesis is to interpret sketched documents independently on whether they are captured
on-line or off-line. For this reason, the proposed approach should contain the following
features. First, as we are working with sketches the elements present in our input
contain distortions. Second, as we would work in on-line or off-line input modes, the
order in the input of the primitives is indifferent. Finally, the proposed method should
be applied in real scenarios, its response time must be slow.
To interpret a sketched document we propose a syntactic approach. A syntactic
approach is composed of two correlated components: a grammar and a parser. The
grammar allows describing the different elements on the document as well as their
relations. The parser, given a document checks whether it belongs to the language
generated by the grammar or not. Thus, the grammar should be able to cope with
the distortions appearing on the instances of the elements. Moreover, it would be
necessary to define a symbol independently of the order of their primitives. Concerning to the parser when analyzing 2D sentences, it does not assume an order in the
primitives. Then, at each new primitive in the input, the parser searches among the
previous analyzed symbols candidates to produce a valid reduction.
Taking into account these features, we have proposed a grammar based on Adjacency Grammars. This kind of grammars defines their productions as a multiset
of symbols rather than a list. This allows describing a symbol without an order in
their components. To cope with distortion we have proposed a distortion model.
This distortion model is an attributed estimated over the constraints of the grammar and passed through the productions. This measure gives an idea on how far is the
symbol from its ideal model. In addition to the distortion on the constraints other
distortions appear when working with sketches. These distortions are: overtracing,
overlapping, gaps or spurious strokes. Some grammatical productions have been defined to cope with these errors. Concerning the recognition, we have proposed an
incremental parser with an indexation mechanism. Incremental parsers analyze the
input symbol by symbol given a response to the user when a primitive is analyzed.
This makes incremental parser suitable to work in on-line as well as off-line input
modes. The parser has been adapted with an indexation mechanism based on a spatial division. This indexation mechanism allows setting the primitives in the space
and reducing the search to a neighbourhood.
A third contribution is a grammatical inference algorithm. This method given a
set of symbols captures the production describing it. In the field of formal languages,
different approaches has been proposed but in the graphical domain not so much work
is done in this field. The proposed method is able to capture the production from
a set of symbol although they are drawn in different order. A matching step based
on the Haussdorff distance and the Hungarian method has been proposed to match
the primitives of the different symbols. In addition the proposed approach is able to
capture the variability in the parameters of the constraints.
From the experimental results, we may conclude that we have proposed a robust
approach to describe and recognize sketches. Moreover, the addition of new symbols
to the alphabet is not restricted to an expert. Finally, the proposed approach has
been used in two real scenarios obtaining a good performance.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Gemma Sanchez;Josep Llados  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN (up) 978-84-937261-4-0 Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number DAG @ dag @ Mas2010 Serial 1334  
Permanent link to this record
 

 
Author Aura Hernandez-Sabate edit   pdf
isbn  openurl
  Title Exploring Arterial Dynamics and Structures in IntraVascular Ultrasound Sequences Type Book Whole
  Year 2009 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Cardiovascular diseases are a leading cause of death in developed countries. Most of them are caused by arterial (specially coronary) diseases, mainly caused by plaque accumulation. Such pathology narrows blood flow (stenosis) and affects artery bio- mechanical elastic properties (atherosclerosis). In the last decades, IntraVascular UltraSound (IVUS) has become a usual imaging technique for the diagnosis and follow up of arterial diseases. IVUS is a catheter-based imaging technique which shows a sequence of cross sections of the artery under study. Inspection of a single image gives information about the percentage of stenosis. Meanwhile, inspection of longitudinal views provides information about artery bio-mechanical properties, which can prevent a fatal outcome of the cardiovascular disease. On one hand, dynamics of arteries (due to heart pumping among others) is a major artifact for exploring tissue bio-mechanical properties. On the other one, manual stenosis measurements require a manual tracing of vessel borders, which is a time-consuming task and might suffer from inter-observer variations. This PhD thesis proposes several image processing tools for exploring vessel dy- namics and structures. We present a physics-based model to extract, analyze and correct vessel in-plane rigid dynamics and to retrieve cardiac phase. Furthermore, we introduce a deterministic-statistical method for automatic vessel borders detection. In particular, we address adventitia layer segmentation. An accurate validation pro- tocol to ensure reliable clinical applicability of the methods is a crucial step in any proposal of an algorithm. In this thesis we take special care in designing a valida- tion protocol for each approach proposed and we contribute to the in vivo dynamics validation with a quantitative and objective score to measure the amount of motion suppressed.  
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Debora Gil  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN (up) 978-84-937261-6-4 Medium  
  Area Expedition Conference  
  Notes IAM; Approved no  
  Call Number IAM @ iam @ Her2009 Serial 1543  
Permanent link to this record
 

 
Author Partha Pratim Roy edit  isbn
openurl 
  Title Multi-Oriented and Multi-Scaled Text Character Analysis and Recognition in Graphical Documents and their Applications to Document Image Retrieval Type Book Whole
  Year 2010 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract With the advent research of Document Image Analysis and Recognition (DIAR), an
important line of research is explored on indexing and retrieval of graphics rich documents. It aims at finding relevant documents relying on segmentation and recognition
of text and graphics components underlying in non-standard layout where commercial
OCRs can not be applied due to complexity. This thesis is focused towards text information extraction approaches in graphical documents and retrieval of such documents
using text information.
Automatic text recognition in graphical documents (map, engineering drawing,
etc.) involves many challenges because text characters are usually printed in multioriented and multi-scale way along with different graphical objects. Text characters
are used to annotate the graphical curve lines and hence, many times they follow
curvi-linear paths too. For OCR of such documents, individual text lines and their
corresponding words/characters need to be extracted.
For recognition of multi-font, multi-scale and multi-oriented characters, we have
proposed a feature descriptor for character shape using angular information from contour pixels to take care of the invariance nature. To improve the efficiency of OCR, an
approach towards the segmentation of multi-oriented touching strings into individual
characters is also discussed. Convex hull based background information is used to
segment a touching string into possible primitive segments and later these primitive
segments are merged to get optimum segmentation using dynamic programming. To
overcome the touching/overlapping problem of text with graphical lines, a character
spotting approach using SIFT and skeleton information is included. Afterwards, we
propose a novel method to extract individual curvi-linear text lines using the foreground and background information of the characters of the text and a water reservoir
concept is used to utilize the background information.
We have also formulated the methodologies for graphical document retrieval applications using query words and seals. The retrieval approaches are performed using
recognition results of individual components in the document. Given a query text,
the system extracts positional knowledge from the query word and uses the same to
generate hypothetical locations in the document. Indexing of documents is also performed based on automatic detection of seals from documents containing cluttered
background. A seal is characterized by scale and rotation invariant spatial feature
descriptors computed from labelled text characters and a concept based on the Generalized Hough Transform is used to locate the seal in documents.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Josep Llados;Umapada Pal  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN (up) 978-84-937261-7-1 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Admin @ si @ Roy2010 Serial 1455  
Permanent link to this record
 

 
Author Jose Manuel Alvarez edit  isbn
openurl 
  Title Combining Context and Appearance for Road Detection Type Book Whole
  Year 2010 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Road traffic crashes have become a major cause of death and injury throughout the world.
Hence, in order to improve road safety, the automobile manufacture is moving towards the
development of vehicles with autonomous functionalities such as keeping in the right lane, safe distance keeping between vehicles or regulating the speed of the vehicle according to the traffic conditions. A key component of these systems is vision–based road detection that aims to detect the free road surface ahead the moving vehicle. Detecting the road using a monocular vision system is very challenging since the road is an outdoor scenario imaged from a mobile platform. Hence, the detection algorithm must be able to deal with continuously changing imaging conditions such as the presence ofdifferent objects (vehicles, pedestrians), different environments (urban, highways, off–road), different road types (shape, color), and different imaging conditions (varying illumination, different viewpoints and changing weather conditions). Therefore, in this thesis, we focus on vision–based road detection using a single color camera. More precisely, we first focus on analyzing and grouping pixels according to their low–level properties. In this way, two different approaches are presented to exploit
color and photometric invariance. Then, we focus the research of the thesis on exploiting context information. This information provides relevant knowledge about the road not using pixel features from road regions but semantic information from the analysis of the scene.
In this way, we present two different approaches to infer the geometry of the road ahead
the moving vehicle. Finally, we focus on combining these context and appearance (color)
approaches to improve the overall performance of road detection algorithms. The qualitative and quantitative results presented in this thesis on real–world driving sequences show that the proposed method is robust to varying imaging conditions, road types and scenarios going beyond the state–of–the–art.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Antonio Lopez;Theo Gevers  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN (up) 978-84-937261-8-8 Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ Alv2010 Serial 1454  
Permanent link to this record
 

 
Author Ignasi Rius edit  isbn
openurl 
  Title Motion Priors for Efficient Bayesian Tracking in Human Sequence Evaluation Type Book Whole
  Year 2010 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Recovering human motion by visual analysis is a challenging computer vision research
area with a lot of potential applications. Model-based tracking approaches, and in
particular particle lters, formulate the problem as a Bayesian inference task whose
aim is to sequentially estimate the distribution of the parameters of a human body
model over time. These approaches strongly rely on good dynamical and observation
models to predict and update congurations of the human body according to measurements from the image data. However, it is very dicult to design observation
models which extract useful and reliable information from image sequences robustly.
This results specially challenging in monocular tracking given that only one viewpoint
from the scene is available. Therefore, to overcome these limitations strong motion
priors are needed to guide the exploration of the state space.
The work presented in this Thesis is aimed to retrieve the 3D motion parameters
of a human body model from incomplete and noisy measurements of a monocular
image sequence. These measurements consist of the 2D positions of a reduced set of
joints in the image plane. Towards this end, we present a novel action-specic model
of human motion which is trained from several databases of real motion-captured
performances of an action, and is used as a priori knowledge within a particle ltering
scheme.
Body postures are represented by means of a simple and compact stick gure
model which uses direction cosines to represent the direction of body limbs in the 3D
Cartesian space. Then, for a given action, Principal Component Analysis is applied to
the training data to perform dimensionality reduction over the highly correlated input
data. Before the learning stage of the action model, the input motion performances
are synchronized by means of a novel dense matching algorithm based on Dynamic
Programming. The algorithm synchronizes all the motion sequences of the same
action class, nding an optimal solution in real-time.
Then, a probabilistic action model is learnt, based on the synchronized motion
examples, which captures the variability and temporal evolution of full-body motion
within a specic action. In particular, for each action, the parameters learnt are: a
representative manifold for the action consisting of its mean performance, the standard deviation from the mean performance, the mean observed direction vectors from
each motion subsequence of a given length and the expected error at a given time
instant.
Subsequently, the action-specic model is used as a priori knowledge on human
motion which improves the eciency and robustness of the overall particle filtering tracking framework. First, the dynamic model guides the particles according to similar
situations previously learnt. Then, the state space is constrained so only feasible
human postures are accepted as valid solutions at each time step. As a result, the
state space is explored more eciently as the particle set covers the most probable
body postures.
Finally, experiments are carried out using test sequences from several motion
databases. Results point out that our tracker scheme is able to estimate the rough
3D conguration of a full-body model providing only the 2D positions of a reduced
set of joints. Separate tests on the sequence synchronization method and the subsequence probabilistic matching technique are also provided.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Jordi Gonzalez;Xavier Roca  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN (up) 978-84-937261-9-5 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Admin @ si @ Riu2010 Serial 1331  
Permanent link to this record
 

 
Author Jaime Moreno edit  url
isbn  openurl
  Title Perceptual Criteria on Image Compresions Type Book Whole
  Year 2011 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Nowadays, digital images are used in many areas in everyday life, but they tend to be big. This increases amount of information leads us to the problem of image data storage. For example, it is common to have a representation a color pixel as a 24-bit number, where the channels red, green, and blue employ 8 bits each. In consequence, this kind of color pixel can specify one of 224 ¼ 16:78 million colors. Therefore, an image at a resolution of 512 £ 512 that allocates 24 bits per pixel, occupies 786,432 bytes. That is why image compression is important. An important feature of image compression is that it can be lossy or lossless. A compressed image is acceptable provided these losses of image information are not perceived by the eye. It is possible to assume that a portion of this information is redundant. Lossless Image Compression is defined as to mathematically decode the same image which was encoded. In Lossy Image Compression needs to identify two features inside the image: the redundancy and the irrelevancy of information. Thus, lossy compression modifies the image data in such a way when they are encoded and decoded, the recovered image is similar enough to the original one. How similar is the recovered image in comparison to the original image is defined prior to the compression process, and it depends on the implementation to be performed. In lossy compression, current image compression schemes remove information considered irrelevant by using mathematical criteria. One of the problems of these schemes is that although the numerical quality of the compressed image is low, it shows a high visual image quality, e.g. it does not show a lot of visible artifacts. It is because these mathematical criteria, used to remove information, do not take into account if the viewed information is perceived by the Human Visual System. Therefore, the aim of an image compression scheme designed to obtain images that do not show artifacts although their numerical quality can be low, is to eliminate the information that is not visible by the Human Visual System. Hence, this Ph.D. thesis proposes to exploit the visual redundancy existing in an image by reducing those features that can be unperceivable for the Human Visual System. First, we define an image quality assessment, which is highly correlated with the psychophysical experiments performed by human observers. The proposed CwPSNR metrics weights the well-known PSNR by using a particular perceptual low level model of the Human Visual System, e.g. the Chromatic Induction Wavelet Model (CIWaM). Second, we propose an image compression algorithm (called Hi-SET), which exploits the high correlation and self-similarity of pixels in a given area or neighborhood by means of a fractal function. Hi-SET possesses the main features that modern image compressors have, that is, it is an embedded coder, which allows a progressive transmission. Third, we propose a perceptual quantizer (½SQ), which is a modification of the uniform scalar quantizer. The ½SQ is applied to a pixel set in a certain Wavelet sub-band, that is, a global quantization. Unlike this, the proposed modification allows to perform a local pixel-by-pixel forward and inverse quantization, introducing into this process a perceptual distortion which depends on the surround spatial information of the pixel. Combining ½SQ method with the Hi-SET image compressor, we define a perceptual image compressor, called ©SET. Finally, a coding method for Region of Interest areas is presented, ½GBbBShift, which perceptually weights pixels into these areas and maintains only the more important perceivable features in the rest of the image. Results presented in this report show that CwPSNR is the best-ranked image quality method when it is applied to the most common image compression distortions such as JPEG and JPEG2000. CwPSNR shows the best correlation with the judgement of human observers, which is based on the results of psychophysical experiments obtained for relevant image quality databases such as TID2008, LIVE, CSIQ and IVC. Furthermore, Hi-SET coder obtains better results both for compression ratios and perceptual image quality than the JPEG2000 coder and other coders that use a Hilbert Fractal for image compression. Hence, when the proposed perceptual quantization is introduced to Hi-SET coder, our compressor improves its numerical and perceptual e±ciency. When ½GBbBShift method applied to Hi-SET is compared against MaxShift method applied to the JPEG2000 standard and Hi-SET, the images coded by our ROI method get the best results when the overall image quality is estimated. Both the proposed perceptual quantization and the ½GBbBShift method are generalized algorithms that can be applied to other Wavelet based image compression algorithms such as JPEG2000, SPIHT or SPECK.  
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Xavier Otazu  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN (up) 978-84-938351-3-2 Medium  
  Area Expedition Conference  
  Notes CIC Approved no  
  Call Number Admin @ si @ Mor2011 Serial 1786  
Permanent link to this record
 

 
Author Naveen Onkarappa edit  isbn
openurl 
  Title Optical Flow in Driver Assistance Systems Type Book Whole
  Year 2013 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Motion perception is one of the most important attributes of the human brain. Visual motion perception consists in inferring speed and direction of elements in a scene based on visual inputs. Analogously, computer vision is assisted by motion cues in the scene. Motion detection in computer vision is useful in solving problems such as segmentation, depth from motion, structure from motion, compression, navigation and many others. These problems are common in several applications, for instance, video surveillance, robot navigation and advanced driver assistance systems (ADAS). One of the most widely used techniques for motion detection is the optical flow estimation. The work in this thesis attempts to make optical flow suitable for the requirements and conditions of driving scenarios. In this context, a novel space-variant representation called reverse log-polar representation is proposed that is shown to be better than the traditional log-polar space-variant representation for ADAS. The space-variant representations reduce the amount of data to be processed. Another major contribution in this research is related to the analysis of the influence of specific characteristics from driving scenarios on the optical flow accuracy. Characteristics such as vehicle speed and
road texture are considered in the aforementioned analysis. From this study, it is inferred that the regularization weight has to be adapted according to the required error measure and for different speeds and road textures. It is also shown that polar represented optical flow suits driving scenarios where predominant motion is translation. Due to the requirements of such a study and by the lack of needed datasets a new synthetic dataset is presented; it contains: i) sequences of different speeds and road textures in an urban scenario; ii) sequences with complex motion of an on-board camera; and iii) sequences with additional moving vehicles in the scene. The ground-truth optical flow is generated by the ray-tracing technique. Further, few applications of optical flow in ADAS are shown. Firstly, a robust RANSAC based technique to estimate horizon line is proposed. Then, an egomotion estimation is presented to compare the proposed space-variant representation with the classical one. As a final contribution, a modification in the regularization term is proposed that notably improves the results
in the ADAS applications. This adaptation is evaluated using a state of the art optical flow technique. The experiments on a public dataset (KITTI) validate the advantages of using the proposed modification.
 
  Address Bellaterra  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Angel Sappa  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN (up) 978-84-940902-1-9 Medium  
  Area Expedition Conference  
  Notes ADAS Approved no  
  Call Number Admin @ si @ Nav2013 Serial 2447  
Permanent link to this record
 

 
Author Anjan Dutta edit  isbn
openurl 
  Title Inexact Subgraph Matching Applied to Symbol Spotting in Graphical Documents Type Book Whole
  Year 2014 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract There is a resurgence in the use of structural approaches in the usual object recognition and retrieval problem. Graph theory, in particular, graph matching plays a relevant role in that. Specifically, the detection of an object (or a part of that) in an image in terms of structural features can be formulated as a subgraph matching. Subgraph matching is a challenging task. Specially due to the presence of outliers most of the graph matching algorithms do not perform well in subgraph matching scenario. Also exact subgraph isomorphism has proven to be an NP-complete problem. So naturally, in graph matching community, there are lot of efforts addressing the problem of subgraph matching within suboptimal bound. Most of them work with approximate algorithms that try to get an inexact solution in estimated way. In addition, usual recognition must cope with distortion. Inexact graph matching consists in finding the best isomorphism under a similarity measure. Theoretically this thesis proposes algorithms for solving subgraph matching in an approximate and inexact way.
We consider the symbol spotting problem on graphical documents or line drawings from application point of view. This is a well known problem in the graphics recognition community. It can be further applied for indexing and classification of documents based on their contents. The structural nature of this kind of documents easily motivates one for giving a graph based representation. So the symbol spotting problem on graphical documents can be considered as a subgraph matching problem. The main challenges in this application domain is the noise and distortions that might come during the usage, digitalization and raster to vector conversion of those documents. Apart from that computer vision nowadays is not any more confined within a limited number of images. So dealing a huge number of images with graph based method is a further challenge.
In this thesis, on one hand, we have worked on efficient and robust graph representation to cope with the noise and distortions coming from documents. On the other hand, we have worked on different graph based methods and framework to solve the subgraph matching problem in a better approximated way, which can also deal with considerable number of images. Firstly, we propose a symbol spotting method by hashing serialized subgraphs. Graph serialization allows to create factorized substructures such as graph paths, which can be organized in hash tables depending on the structural similarities of the serialized subgraphs. The involvement of hashing techniques helps to reduce the search space substantially and speeds up the spotting procedure. Secondly, we introduce contextual similarities based on the walk based propagation on tensor product graph. These contextual similarities involve higher order information and more reliable than pairwise similarities. We use these higher order similarities to formulate subgraph matching as a node and edge selection problem in the tensor product graph. Thirdly, we propose near convex grouping to form near convex region adjacency graph which eliminates the limitations of traditional region adjacency graph representation for graphic recognition. Fourthly, we propose a hierarchical graph representation by simplifying/correcting the structural errors to create a hierarchical graph of the base graph. Later these hierarchical graph structures are matched with some graph matching methods. Apart from that, in this thesis we have provided an overall experimental comparison of all the methods and some of the state-of-the-art methods. Furthermore, some dataset models have also been proposed.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Josep Llados;Umapada Pal  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN (up) 978-84-940902-4-0 Medium  
  Area Expedition Conference  
  Notes DAG; 600.077 Approved no  
  Call Number Admin @ si @ Dut2014 Serial 2465  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: