toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Andres Traumann; Sergio Escalera; Gholamreza Anbarjafari edit   pdf
doi  openurl
  Title A New Retexturing Method for Virtual Fitting Room Using Kinect 2 Camera Type Conference Article
  Year 2015 Publication 2015 IEEE Conference on Computer Vision and Pattern Recognition Worshops (CVPRW) Abbreviated Journal  
  Volume Issue Pages (down) 75-79  
  Keywords  
  Abstract  
  Address Boston; EEUU; June 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPRW  
  Notes HuPBA;MILAB Approved no  
  Call Number Admin @ si @ TEA2015 Serial 2653  
Permanent link to this record
 

 
Author Hanne Kause; Aura Hernandez-Sabate; Patricia Marquez; Andrea Fuster; Luc Florack; Hans van Assen; Debora Gil edit   pdf
doi  isbn
openurl 
  Title Confidence Measures for Assessing the HARP Algorithm in Tagged Magnetic Resonance Imaging Type Book Chapter
  Year 2015 Publication Statistical Atlases and Computational Models of the Heart. Revised selected papers of Imaging and Modelling Challenges 6th International Workshop, STACOM 2015, Held in Conjunction with MICCAI 2015 Abbreviated Journal  
  Volume 9534 Issue Pages (down) 69-79  
  Keywords  
  Abstract Cardiac deformation and changes therein have been linked to pathologies. Both can be extracted in detail from tagged Magnetic Resonance Imaging (tMRI) using harmonic phase (HARP) images. Although point tracking algorithms have shown to have high accuracies on HARP images, these vary with position. Detecting and discarding areas with unreliable results is crucial for use in clinical support systems. This paper assesses the capability of two confidence measures (CMs), based on energy and image structure, for detecting locations with reduced accuracy in motion tracking results. These CMs were tested on a database of simulated tMRI images containing the most common artifacts that may affect tracking accuracy. CM performance is assessed based on its capability for HARP tracking error bounding and compared in terms of significant differences detected using a multi comparison analysis of variance that takes into account the most influential factors on HARP tracking performance. Results showed that the CM based on image structure was better suited to detect unreliable optical flow vectors. In addition, it was shown that CMs can be used to detect optical flow vectors with large errors in order to improve the optical flow obtained with the HARP tracking algorithm.  
  Address Munich; Germany; January 2015  
  Corporate Author Thesis  
  Publisher Springer International Publishing Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-319-28711-9 Medium  
  Area Expedition Conference STACOM  
  Notes ADAS; IAM; 600.075; 600.076; 600.060; 601.145 Approved no  
  Call Number Admin @ si @ KHM2015 Serial 2734  
Permanent link to this record
 

 
Author Marc Bolaños; Maite Garolera; Petia Radeva edit  doi
isbn  openurl
  Title Object Discovery using CNN Features in Egocentric Videos Type Conference Article
  Year 2015 Publication Pattern Recognition and Image Analysis, Proceedings of 7th Iberian Conference , ibPRIA 2015 Abbreviated Journal  
  Volume 9117 Issue Pages (down) 67-74  
  Keywords Object discovery; Egocentric videos; Lifelogging; CNN  
  Abstract Lifelogging devices based on photo/video are spreading faster everyday. This growth can represent great benefits to develop methods for extraction of meaningful information about the user wearing the device and his/her environment. In this paper, we propose a semi-supervised strategy for easily discovering objects relevant to the person wearing a first-person camera. The egocentric video sequence acquired by the camera, uses both the appearance extracted by means of a deep convolutional neural network and an object refill methodology that allow to discover objects even in case of small amount of object appearance in the collection of images. We validate our method on a sequence of 1000 egocentric daily images and obtain results with an F-measure of 0.5, 0.17 better than the state of the art approach.  
  Address Santiago de Compostela; España; June 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-319-19389-2 Medium  
  Area Expedition Conference IbPRIA  
  Notes MILAB Approved no  
  Call Number Admin @ si @ BGR2015 Serial 2596  
Permanent link to this record
 

 
Author Kamal Nasrollahi; Sergio Escalera; P. Rasti; Gholamreza Anbarjafari; Xavier Baro; Hugo Jair Escalante; Thomas B. Moeslund edit   pdf
doi  openurl
  Title Deep Learning based Super-Resolution for Improved Action Recognition Type Conference Article
  Year 2015 Publication 5th International Conference on Image Processing Theory, Tools and Applications IPTA2015 Abbreviated Journal  
  Volume Issue Pages (down) 67 - 72  
  Keywords  
  Abstract Action recognition systems mostly work with videos of proper quality and resolution. Even most challenging benchmark databases for action recognition, hardly include videos of low-resolution from, e.g., surveillance cameras. In videos recorded by such cameras, due to the distance between people and cameras, people are pictured very small and hence challenge action recognition algorithms. Simple upsampling methods, like bicubic interpolation, cannot retrieve all the detailed information that can help the recognition. To deal with this problem, in this paper we combine results of bicubic interpolation with results of a state-ofthe-art deep learning-based super-resolution algorithm, through an alpha-blending approach. The experimental results obtained on down-sampled version of a large subset of Hoolywood2 benchmark database show the importance of the proposed system in increasing the recognition rate of a state-of-the-art action recognition system for handling low-resolution videos.  
  Address Orleans; France; November 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference IPTA  
  Notes HuPBA;MV Approved no  
  Call Number Admin @ si @ NER2015 Serial 2648  
Permanent link to this record
 

 
Author David Sanchez-Mendoza; David Masip; Agata Lapedriza edit   file
doi  openurl
  Title Emotion recognition from mid-level features Type Journal Article
  Year 2015 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 67 Issue Part 1 Pages (down) 66–74  
  Keywords Facial expression; Emotion recognition; Action units; Computer vision  
  Abstract In this paper we present a study on the use of Action Units as mid-level features for automatically recognizing basic and subtle emotions. We propose a representation model based on mid-level facial muscular movement features. We encode these movements dynamically using the Facial Action Coding System, and propose to use these intermediate features based on Action Units (AUs) to classify emotions. AUs activations are detected fusing a set of spatiotemporal geometric and appearance features. The algorithm is validated in two applications: (i) the recognition of 7 basic emotions using the publicly available Cohn-Kanade database, and (ii) the inference of subtle emotional cues in the Newscast database. In this second scenario, we consider emotions that are perceived cumulatively in longer periods of time. In particular, we Automatically classify whether video shoots from public News TV channels refer to Good or Bad news. To deal with the different video lengths we propose a Histogram of Action Units and compute it using a sliding window strategy on the frame sequences. Our approach achieves accuracies close to human perception.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier B.V. Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-8655 ISBN Medium  
  Area Expedition Conference  
  Notes OR;MV Approved no  
  Call Number Admin @ si @ SML2015 Serial 2746  
Permanent link to this record
 

 
Author Marta Nuñez-Garcia; Sonja Simpraga; M.Angeles Jurado; Maite Garolera; Roser Pueyo; Laura Igual edit  doi
openurl 
  Title FADR: Functional-Anatomical Discriminative Regions for rest fMRI Characterization Type Conference Article
  Year 2015 Publication Machine Learning in Medical Imaging, Proceedings of 6th International Workshop, MLMI 2015, Held in Conjunction with MICCAI 2015 Abbreviated Journal  
  Volume Issue Pages (down) 61-68  
  Keywords  
  Abstract  
  Address Munich; Germany; October 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference MLMI  
  Notes MILAB Approved no  
  Call Number Admin @ si @ NSJ2015 Serial 2674  
Permanent link to this record
 

 
Author Aura Hernandez-Sabate; Meritxell Joanpere; Nuria Gorgorio; Lluis Albarracin edit   pdf
url  openurl
  Title Mathematics learning opportunities when playing a Tower Defense Game Type Journal
  Year 2015 Publication International Journal of Serious Games Abbreviated Journal IJSG  
  Volume 2 Issue 4 Pages (down) 57-71  
  Keywords Tower Defense game; learning opportunities; mathematics; problem solving; game design  
  Abstract A qualitative research study is presented herein with the purpose of identifying mathematics learning opportunities in students between 10 and 12 years old while playing a commercial version of a Tower Defense game. These learning opportunities are understood as mathematicisable moments of the game and involve the establishment of relationships between the game and mathematical problem solving. Based on the analysis of these mathematicisable moments, we conclude that the game can promote problem-solving processes and learning opportunities that can be associated with different mathematical contents that appears in mathematics curricula, thought it seems that teacher or new game elements might be needed to facilitate the processes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.076 Approved no  
  Call Number Admin @ si @ HJG2015 Serial 2730  
Permanent link to this record
 

 
Author Ivan Huerta; Michael Holte; Thomas B. Moeslund; Jordi Gonzalez edit   pdf
doi  openurl
  Title Chromatic shadow detection and tracking for moving foreground segmentation Type Journal Article
  Year 2015 Publication Image and Vision Computing Abbreviated Journal IMAVIS  
  Volume 41 Issue Pages (down) 42-53  
  Keywords Detecting moving objects; Chromatic shadow detection; Temporal local gradient; Spatial and Temporal brightness and angle distortions; Shadow tracking  
  Abstract Advanced segmentation techniques in the surveillance domain deal with shadows to avoid distortions when detecting moving objects. Most approaches for shadow detection are still typically restricted to penumbra shadows and cannot cope well with umbra shadows. Consequently, umbra shadow regions are usually detected as part of moving objects, thus a ecting the performance of the nal detection. In this paper we address the detection of both penumbra and umbra shadow regions. First, a novel bottom-up approach is presented based on gradient and colour models, which successfully discriminates between chromatic moving cast shadow regions and those regions detected as moving objects. In essence, those regions corresponding to potential shadows are detected based on edge partitioning and colour statistics. Subsequently (i) temporal similarities between textures and (ii) spatial similarities between chrominance angle and brightness distortions are analysed for each potential shadow region for detecting the umbra shadow regions. Our second contribution re nes even further the segmentation results: a tracking-based top-down approach increases the performance of our bottom-up chromatic shadow detection algorithm by properly correcting non-detected shadows.
To do so, a combination of motion lters in a data association framework exploits the temporal consistency between objects and shadows to increase
the shadow detection rate. Experimental results exceed current state-of-the-
art in shadow accuracy for multiple well-known surveillance image databases which contain di erent shadowed materials and illumination conditions.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ISE; 600.078; 600.063 Approved no  
  Call Number Admin @ si @ HHM2015 Serial 2703  
Permanent link to this record
 

 
Author Firat Ismailoglu; Ida G. Sprinkhuizen-Kuyper; Evgueni Smirnov; Sergio Escalera; Ralf Peeters edit  url
doi  isbn
openurl 
  Title Fractional Programming Weighted Decoding for Error-Correcting Output Codes Type Conference Article
  Year 2015 Publication Multiple Classifier Systems, Proceedings of 12th International Workshop , MCS 2015 Abbreviated Journal  
  Volume Issue Pages (down) 38-50  
  Keywords  
  Abstract In order to increase the classification performance obtained using Error-Correcting Output Codes designs (ECOC), introducing weights in the decoding phase of the ECOC has attracted a lot of interest. In this work, we present a method for ECOC designs that focuses on increasing hypothesis margin on the data samples given a base classifier. While achieving this, we implicitly reward the base classifiers with high performance, whereas punish those with low performance. The resulting objective function is of the fractional programming type and we deal with this problem through the Dinkelbach’s Algorithm. The conducted tests over well known UCI datasets show that the presented method is superior to the unweighted decoding and that it outperforms the results of the state-of-the-art weighted decoding methods in most of the performed experiments.  
  Address Gunzburg; Germany; June 2015  
  Corporate Author Thesis  
  Publisher Springer International Publishing Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-319-20247-1 Medium  
  Area Expedition Conference MCS  
  Notes HuPBA;MILAB Approved no  
  Call Number Admin @ si @ ISS2015 Serial 2601  
Permanent link to this record
 

 
Author Mohammad Rouhani; Angel Sappa; E. Boyer edit  doi
openurl 
  Title Implicit B-Spline Surface Reconstruction Type Journal Article
  Year 2015 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP  
  Volume 24 Issue 1 Pages (down) 22 - 32  
  Keywords  
  Abstract This paper presents a fast and flexible curve, and surface reconstruction technique based on implicit B-spline. This representation does not require any parameterization and it is locally supported. This fact has been exploited in this paper to propose a reconstruction technique through solving a sparse system of equations. This method is further accelerated to reduce the dimension to the active control lattice. Moreover, the surface smoothness and user interaction are allowed for controlling the surface. Finally, a novel weighting technique has been introduced in order to blend small patches and smooth them in the overlapping regions. The whole framework is very fast and efficient and can handle large cloud of points with very low computational cost. The experimental results show the flexibility and accuracy of the proposed algorithm to describe objects with complex topologies. Comparisons with other fitting methods highlight the superiority of the proposed approach in the presence of noise and missing data.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1057-7149 ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.076 Approved no  
  Call Number Admin @ si @ RSB2015 Serial 2541  
Permanent link to this record
 

 
Author Mohammad Ali Bagheri; Qigang Gao; Sergio Escalera; Albert Clapes; Kamal Nasrollahi; Michael Holte; Thomas B. Moeslund edit  url
doi  openurl
  Title Keep it Accurate and Diverse: Enhancing Action Recognition Performance by Ensemble Learning Type Conference Article
  Year 2015 Publication IEEE Conference on Computer Vision and Pattern Recognition Worshops (CVPRW) Abbreviated Journal  
  Volume Issue Pages (down) 22-29  
  Keywords  
  Abstract The performance of different action recognition techniques has recently been studied by several computer vision researchers. However, the potential improvement in classification through classifier fusion by ensemble-based methods has remained unattended. In this work, we evaluate the performance of an ensemble of action learning techniques, each performing the recognition task from a different perspective.
The underlying idea is that instead of aiming a very sophisticated and powerful representation/learning technique, we can learn action categories using a set of relatively simple and diverse classifiers, each trained with different feature set. In addition, combining the outputs of several learners can reduce the risk of an unfortunate selection of a learner on an unseen action recognition scenario.
This leads to having a more robust and general-applicable framework. In order to improve the recognition performance, a powerful combination strategy is utilized based on the Dempster-Shafer theory, which can effectively make use
of diversity of base learners trained on different sources of information. The recognition results of the individual classifiers are compared with those obtained from fusing the classifiers’ output, showing enhanced performance of the proposed methodology.
 
  Address Boston; EEUU; June 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPRW  
  Notes HuPBA;MILAB Approved no  
  Call Number Admin @ si @ BGE2015 Serial 2655  
Permanent link to this record
 

 
Author Victor Ponce; Sergio Escalera; Marc Perez; Oriol Janes; Xavier Baro edit  doi
openurl 
  Title Non-Verbal Communication Analysis in Victim-Offender Mediations Type Journal Article
  Year 2015 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 67 Issue 1 Pages (down) 19-27  
  Keywords Victim–Offender Mediation; Multi-modal human behavior analysis; Face and gesture recognition; Social signal processing; Computer vision; Machine learning  
  Abstract We present a non-invasive ambient intelligence framework for the semi-automatic analysis of non-verbal communication applied to the restorative justice field. We propose the use of computer vision and social signal processing technologies in real scenarios of Victim–Offender Mediations, applying feature extraction techniques to multi-modal audio-RGB-depth data. We compute a set of behavioral indicators that define communicative cues from the fields of psychology and observational methodology. We test our methodology on data captured in real Victim–Offender Mediation sessions in Catalonia. We define the ground truth based on expert opinions when annotating the observed social responses. Using different state of the art binary classification approaches, our system achieves recognition accuracies of 86% when predicting satisfaction, and 79% when predicting both agreement and receptivity. Applying a regression strategy, we obtain a mean deviation for the predictions between 0.5 and 0.7 in the range [1–5] for the computed social signals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MV Approved no  
  Call Number Admin @ si @ PEP2015 Serial 2583  
Permanent link to this record
 

 
Author Fahad Shahbaz Khan; Muhammad Anwer Rao; Joost Van de Weijer; Michael Felsberg; J.Laaksonen edit  doi
openurl 
  Title Compact color texture description for texture classification Type Journal Article
  Year 2015 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 51 Issue Pages (down) 16-22  
  Keywords  
  Abstract Describing textures is a challenging problem in computer vision and pattern recognition. The classification problem involves assigning a category label to the texture class it belongs to. Several factors such as variations in scale, illumination and viewpoint make the problem of texture description extremely challenging. A variety of histogram based texture representations exists in literature.
However, combining multiple texture descriptors and assessing their complementarity is still an open research problem. In this paper, we first show that combining multiple local texture descriptors significantly improves the recognition performance compared to using a single best method alone. This
gain in performance is achieved at the cost of high-dimensional final image representation. To counter this problem, we propose to use an information-theoretic compression technique to obtain a compact texture description without any significant loss in accuracy. In addition, we perform a comprehensive
evaluation of pure color descriptors, popular in object recognition, for the problem of texture classification. Experiments are performed on four challenging texture datasets namely, KTH-TIPS-2a, KTH-TIPS-2b, FMD and Texture-10. The experiments clearly demonstrate that our proposed compact multi-texture approach outperforms the single best texture method alone. In all cases, discriminative color names outperforms other color features for texture classification. Finally, we show that combining discriminative color names with compact texture representation outperforms state-of-the-art methods by 7:8%, 4:3% and 5:0% on KTH-TIPS-2a, KTH-TIPS-2b and Texture-10 datasets respectively.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.068; 600.079;ADAS Approved no  
  Call Number Admin @ si @ KRW2015a Serial 2587  
Permanent link to this record
 

 
Author Lluis Pere de las Heras; Oriol Ramos Terrades; Sergi Robles; Gemma Sanchez edit  doi
openurl 
  Title CVC-FP and SGT: a new database for structural floor plan analysis and its groundtruthing tool Type Journal Article
  Year 2015 Publication International Journal on Document Analysis and Recognition Abbreviated Journal IJDAR  
  Volume 18 Issue 1 Pages (down) 15-30  
  Keywords  
  Abstract Recent results on structured learning methods have shown the impact of structural information in a wide range of pattern recognition tasks. In the field of document image analysis, there is a long experience on structural methods for the analysis and information extraction of multiple types of documents. Yet, the lack of conveniently annotated and free access databases has not benefited the progress in some areas such as technical drawing understanding. In this paper, we present a floor plan database, named CVC-FP, that is annotated for the architectural objects and their structural relations. To construct this database, we have implemented a groundtruthing tool, the SGT tool, that allows to make specific this sort of information in a natural manner. This tool has been made for general purpose groundtruthing: It allows to define own object classes and properties, multiple labeling options are possible, grants the cooperative work, and provides user and version control. We finally have collected some of the recent work on floor plan interpretation and present a quantitative benchmark for this database. Both CVC-FP database and the SGT tool are freely released to the research community to ease comparisons between methods and boost reproducible research.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-2833 ISBN Medium  
  Area Expedition Conference  
  Notes DAG; ADAS; 600.061; 600.076; 600.077 Approved no  
  Call Number Admin @ si @ HRR2015 Serial 2567  
Permanent link to this record
 

 
Author Meysam Madadi; Sergio Escalera; Jordi Gonzalez; Xavier Roca; Felipe Lumbreras edit  doi
openurl 
  Title Multi-part body segmentation based on depth maps for soft biometry analysis Type Journal Article
  Year 2015 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 56 Issue Pages (down) 14-21  
  Keywords 3D shape context; 3D point cloud alignment; Depth maps; Human body segmentation; Soft biometry analysis  
  Abstract This paper presents a novel method extracting biometric measures using depth sensors. Given a multi-part labeled training data, a new subject is aligned to the best model of the dataset, and soft biometrics such as lengths or circumference sizes of limbs and body are computed. The process is performed by training relevant pose clusters, defining a representative model, and fitting a 3D shape context descriptor within an iterative matching procedure. We show robust measures by applying orthogonal plates to body hull. We test our approach in a novel full-body RGB-Depth data set, showing accurate estimation of soft biometrics and better segmentation accuracy in comparison with random forest approach without requiring large training data.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA; ISE; ADAS; 600.076;600.049; 600.063; 600.054; 302.018;MILAB Approved no  
  Call Number Admin @ si @ MEG2015 Serial 2588  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: