toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Galadrielle Humblot-Renaux; Sergio Escalera; Thomas B. Moeslund edit  url
doi  openurl
  Title Beyond AUROC & co. for evaluating out-of-distribution detection performance Type Conference Article
  Year 2023 Publication Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops Abbreviated Journal  
  Volume Issue Pages (down) 3880-3889  
  Keywords  
  Abstract While there has been a growing research interest in developing out-of-distribution (OOD) detection methods, there has been comparably little discussion around how these methods should be evaluated. Given their relevance for safe(r) AI, it is important to examine whether the basis for comparing OOD detection methods is consistent with practical needs. In this work, we take a closer look at the go-to metrics for evaluating OOD detection, and question the approach of exclusively reducing OOD detection to a binary classification task with little consideration for the detection threshold. We illustrate the limitations of current metrics (AUROC & its friends) and propose a new metric – Area Under the Threshold Curve (AUTC), which explicitly penalizes poor separation between ID and OOD samples. Scripts and data are available at https://github.com/glhr/beyond-auroc  
  Address Vancouver; Canada; June 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPRW  
  Notes HUPBA Approved no  
  Call Number Admin @ si @ HEM2023 Serial 3918  
Permanent link to this record
 

 
Author Filip Szatkowski; Mateusz Pyla; Marcin Przewięzlikowski; Sebastian Cygert; Bartłomiej Twardowski; Tomasz Trzcinski edit   pdf
url  openurl
  Title Adapt Your Teacher: Improving Knowledge Distillation for Exemplar-Free Continual Learning Type Conference Article
  Year 2023 Publication Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops Abbreviated Journal  
  Volume Issue Pages (down) 3512-3517  
  Keywords  
  Abstract In this work, we investigate exemplar-free class incremental learning (CIL) with knowledge distillation (KD) as a regularization strategy, aiming to prevent forgetting. KD-based methods are successfully used in CIL, but they often struggle to regularize the model without access to exemplars of the training data from previous tasks. Our analysis reveals that this issue originates from substantial representation shifts in the teacher network when dealing with out-of-distribution data. This causes large errors in the KD loss component, leading to performance degradation in CIL. Inspired by recent test-time adaptation methods, we introduce Teacher Adaptation (TA), a method that concurrently updates the teacher and the main model during incremental training. Our method seamlessly integrates with KD-based CIL approaches and allows for consistent enhancement of their performance across multiple exemplar-free CIL benchmarks.  
  Address Paris; France; October 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICCVW  
  Notes LAMP Approved no  
  Call Number Admin @ si @ Serial 3944  
Permanent link to this record
 

 
Author Valeriya Khan; Sebastian Cygert; Bartlomiej Twardowski; Tomasz Trzcinski edit   pdf
url  openurl
  Title Looking Through the Past: Better Knowledge Retention for Generative Replay in Continual Learning Type Conference Article
  Year 2023 Publication Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops Abbreviated Journal  
  Volume Issue Pages (down) 3496-3500  
  Keywords  
  Abstract In this work, we improve the generative replay in a continual learning setting. We notice that in VAE-based generative replay, the generated features are quite far from the original ones when mapped to the latent space. Therefore, we propose modifications that allow the model to learn and generate complex data. More specifically, we incorporate the distillation in latent space between the current and previous models to reduce feature drift. Additionally, a latent matching for the reconstruction and original data is proposed to improve generated features alignment. Further, based on the observation that the reconstructions are better for preserving knowledge, we add the cycling of generations through the previously trained model to make them closer to the original data. Our method outperforms other generative replay methods in various scenarios.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICCVW  
  Notes LAMP Approved no  
  Call Number Admin @ si @ KCT2023 Serial 3942  
Permanent link to this record
 

 
Author Damian Sojka; Sebastian Cygert; Bartlomiej Twardowski; Tomasz Trzcinski edit   pdf
url  openurl
  Title AR-TTA: A Simple Method for Real-World Continual Test-Time Adaptation Type Conference Article
  Year 2023 Publication Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops Abbreviated Journal  
  Volume Issue Pages (down) 3491-3495  
  Keywords  
  Abstract Test-time adaptation is a promising research direction that allows the source model to adapt itself to changes in data distribution without any supervision. Yet, current methods are usually evaluated on benchmarks that are only a simplification of real-world scenarios. Hence, we propose to validate test-time adaptation methods using the recently introduced datasets for autonomous driving, namely CLAD-C and SHIFT. We observe that current test-time adaptation methods struggle to effectively handle varying degrees of domain shift, often resulting in degraded performance that falls below that of the source model. We noticed that the root of the problem lies in the inability to preserve the knowledge of the source model and adapt to dynamically changing, temporally correlated data streams. Therefore, we enhance well-established self-training framework by incorporating a small memory buffer to increase model stability and at the same time perform dynamic adaptation based on the intensity of domain shift. The proposed method, named AR-TTA, outperforms existing approaches on both synthetic and more real-world benchmarks and shows robustness across a variety of TTA scenarios.  
  Address Paris; France; October 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICCVW  
  Notes LAMP Approved no  
  Call Number Admin @ si @ SCT2023 Serial 3943  
Permanent link to this record
 

 
Author Eduardo Aguilar; Bogdan Raducanu; Petia Radeva; Joost Van de Weijer edit   pdf
url  doi
openurl 
  Title Continual Evidential Deep Learning for Out-of-Distribution Detection Type Conference Article
  Year 2023 Publication IEEE/CVF International Conference on Computer Vision (ICCV) Workshops -Visual Continual Learning workshop Abbreviated Journal  
  Volume Issue Pages (down) 3444-3454  
  Keywords  
  Abstract Uncertainty-based deep learning models have attracted a great deal of interest for their ability to provide accurate and reliable predictions. Evidential deep learning stands out achieving remarkable performance in detecting out-of-distribution (OOD) data with a single deterministic neural network. Motivated by this fact, in this paper we propose the integration of an evidential deep learning method into a continual learning framework in order to perform simultaneously incremental object classification and OOD detection. Moreover, we analyze the ability of vacuity and dissonance to differentiate between in-distribution data belonging to old classes and OOD data. The proposed method, called CEDL, is evaluated on CIFAR-100 considering two settings consisting of 5 and 10 tasks, respectively. From the obtained results, we could appreciate that the proposed method, in addition to provide comparable results in object classification with respect to the baseline, largely outperforms OOD detection compared to several posthoc methods on three evaluation metrics: AUROC, AUPR and FPR95.  
  Address Paris; France; October 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICCVW  
  Notes LAMP; MILAB Approved no  
  Call Number Admin @ si @ ARR2023 Serial 3841  
Permanent link to this record
 

 
Author Eduardo Aguilar; Bogdan Raducanu; Petia Radeva; Joost Van de Weijer edit  url
openurl 
  Title Continual Evidential Deep Learning for Out-of-Distribution Detection Type Conference Article
  Year 2023 Publication Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops Abbreviated Journal  
  Volume Issue Pages (down) 3444-3454  
  Keywords  
  Abstract Uncertainty-based deep learning models have attracted a great deal of interest for their ability to provide accurate and reliable predictions. Evidential deep learning stands out achieving remarkable performance in detecting out-ofdistribution (OOD) data with a single deterministic neural network. Motivated by this fact, in this paper we propose the integration of an evidential deep learning method into a continual learning framework in order to perform simultaneously incremental object classification and OOD detection. Moreover, we analyze the ability of vacuity and dissonance to differentiate between in-distribution data belonging to old classes and OOD data. The proposed method 1, called CEDL, is evaluated on CIFAR-100 considering two settings consisting of 5 and 10 tasks, respectively. From the obtained results, we could appreciate that the proposed method, in addition to provide comparable results in object classification with respect to the baseline, largely outperforms OOD detection compared to several posthoc methods on three evaluation metrics: AUROC, AUPR and FPR95.  
  Address Paris; France; October 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICCVW  
  Notes LAMP; MILAB Approved no  
  Call Number Admin @ si @ ARR2023 Serial 3974  
Permanent link to this record
 

 
Author Fei Yang; Kai Wang; Joost Van de Weijer edit   pdf
url  openurl
  Title ScrollNet: DynamicWeight Importance for Continual Learning Type Conference Article
  Year 2023 Publication Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops Abbreviated Journal  
  Volume Issue Pages (down) 3345-3355  
  Keywords  
  Abstract The principle underlying most existing continual learning (CL) methods is to prioritize stability by penalizing changes in parameters crucial to old tasks, while allowing for plasticity in other parameters. The importance of weights for each task can be determined either explicitly through learning a task-specific mask during training (e.g., parameter isolation-based approaches) or implicitly by introducing a regularization term (e.g., regularization-based approaches). However, all these methods assume that the importance of weights for each task is unknown prior to data exposure. In this paper, we propose ScrollNet as a scrolling neural network for continual learning. ScrollNet can be seen as a dynamic network that assigns the ranking of weight importance for each task before data exposure, thus achieving a more favorable stability-plasticity tradeoff during sequential task learning by reassigning this ranking for different tasks. Additionally, we demonstrate that ScrollNet can be combined with various CL methods, including regularization-based and replay-based approaches. Experimental results on CIFAR100 and TinyImagenet datasets show the effectiveness of our proposed method.  
  Address Paris; France; October 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICCVW  
  Notes LAMP Approved no  
  Call Number Admin @ si @ WWW2023 Serial 3945  
Permanent link to this record
 

 
Author Carlos Martin-Isla; Victor M Campello; Cristian Izquierdo; Kaisar Kushibar; Carla Sendra Balcells; Polyxeni Gkontra; Alireza Sojoudi; Mitchell J Fulton; Tewodros Weldebirhan Arega; Kumaradevan Punithakumar; Lei Li; Xiaowu Sun; Yasmina Al Khalil; Di Liu; Sana Jabbar; Sandro Queiros; Francesco Galati; Moona Mazher; Zheyao Gao; Marcel Beetz; Lennart Tautz; Christoforos Galazis; Marta Varela; Markus Hullebrand; Vicente Grau; Xiahai Zhuang; Domenec Puig; Maria A Zuluaga; Hassan Mohy Ud Din; Dimitris Metaxas; Marcel Breeuwer; Rob J van der Geest; Michelle Noga; Stephanie Bricq; Mark E Rentschler; Andrea Guala; Steffen E Petersen; Sergio Escalera; Jose F Rodriguez Palomares; Karim Lekadir edit  url
doi  openurl
  Title Deep Learning Segmentation of the Right Ventricle in Cardiac MRI: The M&ms Challenge Type Journal Article
  Year 2023 Publication IEEE Journal of Biomedical and Health Informatics Abbreviated Journal JBHI  
  Volume 27 Issue 7 Pages (down) 3302-3313  
  Keywords  
  Abstract In recent years, several deep learning models have been proposed to accurately quantify and diagnose cardiac pathologies. These automated tools heavily rely on the accurate segmentation of cardiac structures in MRI images. However, segmentation of the right ventricle is challenging due to its highly complex shape and ill-defined borders. Hence, there is a need for new methods to handle such structure's geometrical and textural complexities, notably in the presence of pathologies such as Dilated Right Ventricle, Tricuspid Regurgitation, Arrhythmogenesis, Tetralogy of Fallot, and Inter-atrial Communication. The last MICCAI challenge on right ventricle segmentation was held in 2012 and included only 48 cases from a single clinical center. As part of the 12th Workshop on Statistical Atlases and Computational Models of the Heart (STACOM 2021), the M&Ms-2 challenge was organized to promote the interest of the research community around right ventricle segmentation in multi-disease, multi-view, and multi-center cardiac MRI. Three hundred sixty CMR cases, including short-axis and long-axis 4-chamber views, were collected from three Spanish hospitals using nine different scanners from three different vendors, and included a diverse set of right and left ventricle pathologies. The solutions provided by the participants show that nnU-Net achieved the best results overall. However, multi-view approaches were able to capture additional information, highlighting the need to integrate multiple cardiac diseases, views, scanners, and acquisition protocols to produce reliable automatic cardiac segmentation algorithms.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA Approved no  
  Call Number Admin @ si @ MCI2023 Serial 3880  
Permanent link to this record
 

 
Author Dipam Goswami; J Schuster; Joost Van de Weijer; Didier Stricker edit   pdf
url  openurl
  Title Attribution-aware Weight Transfer: A Warm-Start Initialization for Class-Incremental Semantic Segmentation Type Conference Article
  Year 2023 Publication Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision Abbreviated Journal  
  Volume Issue Pages (down) 3195-3204  
  Keywords  
  Abstract Attribution-aware Weight Transfer: A Warm-Start Initialization for Class-Incremental Semantic Segmentation. D Goswami, R Schuster, J van de Weijer, D Stricker. Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2023, pp. 3195-3204  
  Address Waikoloa; Hawai; USA; January 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WACV  
  Notes LAMP Approved no  
  Call Number Admin @ si @ GSW2023 Serial 3901  
Permanent link to this record
 

 
Author Chenshen Wu; Joost Van de Weijer edit  url
doi  openurl
  Title Density Map Distillation for Incremental Object Counting Type Conference Article
  Year 2023 Publication Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops Abbreviated Journal  
  Volume Issue Pages (down) 2505-2514  
  Keywords  
  Abstract We investigate the problem of incremental learning for object counting, where a method must learn to count a variety of object classes from a sequence of datasets. A naïve approach to incremental object counting would suffer from catastrophic forgetting, where it would suffer from a dramatic performance drop on previous tasks. In this paper, we propose a new exemplar-free functional regularization method, called Density Map Distillation (DMD). During training, we introduce a new counter head for each task and introduce a distillation loss to prevent forgetting of previous tasks. Additionally, we introduce a cross-task adaptor that projects the features of the current backbone to the previous backbone. This projector allows for the learning of new features while the backbone retains the relevant features for previous tasks. Finally, we set up experiments of incremental learning for counting new objects. Results confirm that our method greatly reduces catastrophic forgetting and outperforms existing methods.  
  Address Vancouver; Canada; June 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPRW  
  Notes LAMP Approved no  
  Call Number Admin @ si @ WuW2023 Serial 3916  
Permanent link to this record
 

 
Author German Barquero; Sergio Escalera; Cristina Palmero edit   pdf
url  openurl
  Title BeLFusion: Latent Diffusion for Behavior-Driven Human Motion Prediction Type Conference Article
  Year 2023 Publication IEEE/CVF International Conference on Computer Vision (ICCV) Workshops Abbreviated Journal  
  Volume Issue Pages (down) 2317-2327  
  Keywords  
  Abstract Stochastic human motion prediction (HMP) has generally been tackled with generative adversarial networks and variational autoencoders. Most prior works aim at predicting highly diverse movements in terms of the skeleton joints’ dispersion. This has led to methods predicting fast and motion-divergent movements, which are often unrealistic and incoherent with past motion. Such methods also neglect contexts that need to anticipate diverse low-range behaviors, or actions, with subtle joint displacements. To address these issues, we present BeLFusion, a model that, for the first time, leverages latent diffusion models in HMP to sample from a latent space where behavior is disentangled from pose and motion. As a result, diversity is encouraged from a behavioral perspective. Thanks to our behavior
coupler’s ability to transfer sampled behavior to ongoing motion, BeLFusion’s predictions display a variety of behaviors that are significantly more realistic than the state of the art. To support it, we introduce two metrics, the Area of
the Cumulative Motion Distribution, and the Average Pairwise Distance Error, which are correlated to our definition of realism according to a qualitative study with 126 participants. Finally, we prove BeLFusion’s generalization power in a new cross-dataset scenario for stochastic HMP.
 
  Address 2-6 October 2023. Paris (France)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICCV  
  Notes HUPBA; no menciona Approved no  
  Call Number Admin @ si @ BEP2023 Serial 3829  
Permanent link to this record
 

 
Author Khanh Nguyen; Ali Furkan Biten; Andres Mafla; Lluis Gomez; Dimosthenis Karatzas edit  url
openurl 
  Title Show, Interpret and Tell: Entity-Aware Contextualised Image Captioning in Wikipedia Type Conference Article
  Year 2023 Publication Proceedings of the 37th AAAI Conference on Artificial Intelligence Abbreviated Journal  
  Volume 37 Issue 2 Pages (down) 1940-1948  
  Keywords  
  Abstract Humans exploit prior knowledge to describe images, and are able to adapt their explanation to specific contextual information given, even to the extent of inventing plausible explanations when contextual information and images do not match. In this work, we propose the novel task of captioning Wikipedia images by integrating contextual knowledge. Specifically, we produce models that jointly reason over Wikipedia articles, Wikimedia images and their associated descriptions to produce contextualized captions. The same Wikimedia image can be used to illustrate different articles, and the produced caption needs to be adapted to the specific context allowing us to explore the limits of the model to adjust captions to different contextual information. Dealing with out-of-dictionary words and Named Entities is a challenging task in this domain. To address this, we propose a pre-training objective, Masked Named Entity Modeling (MNEM), and show that this pretext task results to significantly improved models. Furthermore, we verify that a model pre-trained in Wikipedia generalizes well to News Captioning datasets. We further define two different test splits according to the difficulty of the captioning task. We offer insights on the role and the importance of each modality and highlight the limitations of our model.  
  Address Washington; USA; February 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference AAAI  
  Notes DAG Approved no  
  Call Number Admin @ si @ NBM2023 Serial 3860  
Permanent link to this record
 

 
Author Yawei Li; Yulun Zhang; Radu Timofte; Luc Van Gool; Zhijun Tu; Kunpeng Du; Hailing Wang; Hanting Chen; Wei Li; Xiaofei Wang; Jie Hu; Yunhe Wang; Xiangyu Kong; Jinlong Wu; Dafeng Zhang; Jianxing Zhang; Shuai Liu; Furui Bai; Chaoyu Feng; Hao Wang; Yuqian Zhang; Guangqi Shao; Xiaotao Wang; Lei Lei; Rongjian Xu; Zhilu Zhang; Yunjin Chen; Dongwei Ren; Wangmeng Zuo; Qi Wu; Mingyan Han; Shen Cheng; Haipeng Li; Ting Jiang; Chengzhi Jiang; Xinpeng Li; Jinting Luo; Wenjie Lin; Lei Yu; Haoqiang Fan; Shuaicheng Liu; Aditya Arora; Syed Waqas Zamir; Javier Vazquez; Konstantinos G. Derpanis; Michael S. Brown; Hao Li; Zhihao Zhao; Jinshan Pan; Jiangxin Dong; Jinhui Tang; Bo Yang; Jingxiang Chen; Chenghua Li; Xi Zhang; Zhao Zhang; Jiahuan Ren; Zhicheng Ji; Kang Miao; Suiyi Zhao; Huan Zheng; YanYan Wei; Kangliang Liu; Xiangcheng Du; Sijie Liu; Yingbin Zheng; Xingjiao Wu; Cheng Jin; Rajeev Irny; Sriharsha Koundinya; Vighnesh Kamath; Gaurav Khandelwal; Sunder Ali Khowaja; Jiseok Yoon; Ik Hyun Lee; Shijie Chen; Chengqiang Zhao; Huabin Yang; Zhongjian Zhang; Junjia Huang; Yanru Zhang edit  url
doi  openurl
  Title NTIRE 2023 challenge on image denoising: Methods and results Type Conference Article
  Year 2023 Publication Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops Abbreviated Journal  
  Volume Issue Pages (down) 1904-1920  
  Keywords  
  Abstract This paper reviews the NTIRE 2023 challenge on image denoising (σ = 50) with a focus on the proposed solutions and results. The aim is to obtain a network design capable to produce high-quality results with the best performance measured by PSNR for image denoising. Independent additive white Gaussian noise (AWGN) is assumed and the noise level is 50. The challenge had 225 registered participants, and 16 teams made valid submissions. They gauge the state-of-the-art for image denoising.  
  Address Vancouver; Canada; June 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPRW  
  Notes MACO; CIC Approved no  
  Call Number Admin @ si @ LZT2023 Serial 3910  
Permanent link to this record
 

 
Author Dawid Rymarczyk; Joost van de Weijer; Bartosz Zielinski; Bartlomiej Twardowski edit   pdf
url  openurl
  Title ICICLE: Interpretable Class Incremental Continual Learning. Dawid Rymarczyk Type Conference Article
  Year 2023 Publication 20th IEEE International Conference on Computer Vision Abbreviated Journal  
  Volume Issue Pages (down) 1887-1898  
  Keywords  
  Abstract Continual learning enables incremental learning of new tasks without forgetting those previously learned, resulting in positive knowledge transfer that can enhance performance on both new and old tasks. However, continual learning poses new challenges for interpretability, as the rationale behind model predictions may change over time, leading to interpretability concept drift. We address this problem by proposing Interpretable Class-InCremental LEarning (ICICLE), an exemplar-free approach that adopts a prototypical part-based approach. It consists of three crucial novelties: interpretability regularization that distills previously learned concepts while preserving user-friendly positive reasoning; proximity-based prototype initialization strategy dedicated to the fine-grained setting; and task-recency bias compensation devoted to prototypical parts. Our experimental results demonstrate that ICICLE reduces the interpretability concept drift and outperforms the existing exemplar-free methods of common class-incremental learning when applied to concept-based models.  
  Address Paris; France; October 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICCV  
  Notes LAMP Approved no  
  Call Number Admin @ si @ RWZ2023 Serial 3947  
Permanent link to this record
 

 
Author Marcos V Conde; Florin Vasluianu; Javier Vazquez; Radu Timofte edit   pdf
url  openurl
  Title Perceptual image enhancement for smartphone real-time applications Type Conference Article
  Year 2023 Publication Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision Abbreviated Journal  
  Volume Issue Pages (down) 1848-1858  
  Keywords  
  Abstract Recent advances in camera designs and imaging pipelines allow us to capture high-quality images using smartphones. However, due to the small size and lens limitations of the smartphone cameras, we commonly find artifacts or degradation in the processed images. The most common unpleasant effects are noise artifacts, diffraction artifacts, blur, and HDR overexposure. Deep learning methods for image restoration can successfully remove these artifacts. However, most approaches are not suitable for real-time applications on mobile devices due to their heavy computation and memory requirements. In this paper, we propose LPIENet, a lightweight network for perceptual image enhancement, with the focus on deploying it on smartphones. Our experiments show that, with much fewer parameters and operations, our model can deal with the mentioned artifacts and achieve competitive performance compared with state-of-the-art methods on standard benchmarks. Moreover, to prove the efficiency and reliability of our approach, we deployed the model directly on commercial smartphones and evaluated its performance. Our model can process 2K resolution images under 1 second in mid-level commercial smartphones.  
  Address Waikoloa; Hawai; USA; January 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WACV  
  Notes MACO; CIC Approved no  
  Call Number Admin @ si @ CVV2023 Serial 3900  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: