|   | 
Details
   web
Records
Author Jon Almazan; Alicia Fornes; Ernest Valveny
Title A non-rigid appearance model for shape description and recognition Type Journal Article
Year 2012 Publication Pattern Recognition Abbreviated Journal PR
Volume 45 Issue 9 Pages (down) 3105--3113
Keywords Shape recognition; Deformable models; Shape modeling; Hand-drawn recognition
Abstract In this paper we describe a framework to learn a model of shape variability in a set of patterns. The framework is based on the Active Appearance Model (AAM) and permits to combine shape deformations with appearance variability. We have used two modifications of the Blurred Shape Model (BSM) descriptor as basic shape and appearance features to learn the model. These modifications permit to overcome the rigidity of the original BSM, adapting it to the deformations of the shape to be represented. We have applied this framework to representation and classification of handwritten digits and symbols. We show that results of the proposed methodology outperform the original BSM approach.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-3203 ISBN Medium
Area Expedition Conference
Notes DAG Approved no
Call Number DAG @ dag @ AFV2012 Serial 1982
Permanent link to this record
 

 
Author Yagmur Gucluturk; Umut Guclu; Marc Perez; Hugo Jair Escalante; Xavier Baro; Isabelle Guyon; Carlos Andujar; Julio C. S. Jacques Junior; Meysam Madadi; Sergio Escalera
Title Visualizing Apparent Personality Analysis with Deep Residual Networks Type Conference Article
Year 2017 Publication Chalearn Workshop on Action, Gesture, and Emotion Recognition: Large Scale Multimodal Gesture Recognition and Real versus Fake expressed emotions at ICCV Abbreviated Journal
Volume Issue Pages (down) 3101-3109
Keywords
Abstract Automatic prediction of personality traits is a subjective task that has recently received much attention. Specifically, automatic apparent personality trait prediction from multimodal data has emerged as a hot topic within the filed of computer vision and, more particularly, the so called “looking
at people” sub-field. Considering “apparent” personality traits as opposed to real ones considerably reduces the subjectivity of the task. The real world applications are encountered in a wide range of domains, including entertainment, health, human computer interaction, recruitment and security. Predictive models of personality traits are useful for individuals in many scenarios (e.g., preparing for job interviews, preparing for public speaking). However, these predictions in and of themselves might be deemed to be untrustworthy without human understandable supportive evidence. Through a series of experiments on a recently released benchmark dataset for automatic apparent personality trait prediction, this paper characterizes the audio and
visual information that is used by a state-of-the-art model while making its predictions, so as to provide such supportive evidence by explaining predictions made. Additionally, the paper describes a new web application, which gives feedback on apparent personality traits of its users by combining
model predictions with their explanations.
Address Venice; Italy; October 2017
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICCVW
Notes HUPBA; 6002.143 Approved no
Call Number Admin @ si @ GGP2017 Serial 3067
Permanent link to this record
 

 
Author P. Wang; V. Eglin; C. Garcia; C. Largeron; Josep Llados; Alicia Fornes
Title A Coarse-to-Fine Word Spotting Approach for Historical Handwritten Documents Based on Graph Embedding and Graph Edit Distance Type Conference Article
Year 2014 Publication 22nd International Conference on Pattern Recognition Abbreviated Journal
Volume Issue Pages (down) 3074 - 3079
Keywords word spotting; coarse-to-fine mechamism; graphbased representation; graph embedding; graph edit distance
Abstract Effective information retrieval on handwritten document images has always been a challenging task, especially historical ones. In the paper, we propose a coarse-to-fine handwritten word spotting approach based on graph representation. The presented model comprises both the topological and morphological signatures of the handwriting. Skeleton-based graphs with the Shape Context labelled vertexes are established for connected components. Each word image is represented as a sequence of graphs. Aiming at developing a practical and efficient word spotting approach for large-scale historical handwritten documents, a fast and coarse comparison is first applied to prune the regions that are not similar to the query based on the graph embedding methodology. Afterwards, the query and regions of interest are compared by graph edit distance based on the Dynamic Time Warping alignment. The proposed approach is evaluated on a public dataset containing 50 pages of historical marriage license records. The results show that the proposed approach achieves a compromise between efficiency and accuracy.
Address Stockholm; Sweden; August 2014
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-4651 ISBN Medium
Area Expedition Conference ICPR
Notes DAG; 600.061; 602.006; 600.077 Approved no
Call Number Admin @ si @ WEG2014a Serial 2515
Permanent link to this record
 

 
Author Jaume Gibert; Ernest Valveny; Horst Bunke
Title Graph Embedding in Vector Spaces by Node Attribute Statistics Type Journal Article
Year 2012 Publication Pattern Recognition Abbreviated Journal PR
Volume 45 Issue 9 Pages (down) 3072-3083
Keywords Structural pattern recognition; Graph embedding; Data clustering; Graph classification
Abstract Graph-based representations are of broad use and applicability in pattern recognition. They exhibit, however, a major drawback with regards to the processing tools that are available in their domain. Graphembedding into vectorspaces is a growing field among the structural pattern recognition community which aims at providing a feature vector representation for every graph, and thus enables classical statistical learning machinery to be used on graph-based input patterns. In this work, we propose a novel embedding methodology for graphs with continuous nodeattributes and unattributed edges. The approach presented in this paper is based on statistics of the node labels and the edges between them, based on their similarity to a set of representatives. We specifically deal with an important issue of this methodology, namely, the selection of a suitable set of representatives. In an experimental evaluation, we empirically show the advantages of this novel approach in the context of different classification problems using several databases of graphs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-3203 ISBN Medium
Area Expedition Conference
Notes DAG Approved no
Call Number Admin @ si @ GVB2012a Serial 1992
Permanent link to this record
 

 
Author Sudeep Katakol; Basem Elbarashy; Luis Herranz; Joost Van de Weijer; Antonio Lopez
Title Distributed Learning and Inference with Compressed Images Type Journal Article
Year 2021 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP
Volume 30 Issue Pages (down) 3069 - 3083
Keywords
Abstract Modern computer vision requires processing large amounts of data, both while training the model and/or during inference, once the model is deployed. Scenarios where images are captured and processed in physically separated locations are increasingly common (e.g. autonomous vehicles, cloud computing). In addition, many devices suffer from limited resources to store or transmit data (e.g. storage space, channel capacity). In these scenarios, lossy image compression plays a crucial role to effectively increase the number of images collected under such constraints. However, lossy compression entails some undesired degradation of the data that may harm the performance of the downstream analysis task at hand, since important semantic information may be lost in the process. Moreover, we may only have compressed images at training time but are able to use original images at inference time, or vice versa, and in such a case, the downstream model suffers from covariate shift. In this paper, we analyze this phenomenon, with a special focus on vision-based perception for autonomous driving as a paradigmatic scenario. We see that loss of semantic information and covariate shift do indeed exist, resulting in a drop in performance that depends on the compression rate. In order to address the problem, we propose dataset restoration, based on image restoration with generative adversarial networks (GANs). Our method is agnostic to both the particular image compression method and the downstream task; and has the advantage of not adding additional cost to the deployed models, which is particularly important in resource-limited devices. The presented experiments focus on semantic segmentation as a challenging use case, cover a broad range of compression rates and diverse datasets, and show how our method is able to significantly alleviate the negative effects of compression on the downstream visual task.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes LAMP; ADAS; 600.120; 600.118 Approved no
Call Number Admin @ si @ KEH2021 Serial 3543
Permanent link to this record
 

 
Author Mohammad Rouhani; Angel Sappa
Title Relaxing the 3L Algorithm for an Accurate Implicit Polynomial Fitting Type Conference Article
Year 2010 Publication 23rd IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal
Volume Issue Pages (down) 3066-3072
Keywords
Abstract This paper presents a novel method to increase the accuracy of linear fitting of implicit polynomials. The proposed method is based on the 3L algorithm philosophy. The novelty lies on the relaxation of the additional constraints, already imposed by the 3L algorithm. Hence, the accuracy of the final solution is increased due to the proper adjustment of the expected values in the aforementioned additional constraints. Although iterative, the proposed approach solves the fitting problem within a linear framework, which is independent of the threshold tuning. Experimental results, both in 2D and 3D, showing improvements in the accuracy of the fitting are presented. Comparisons with both state of the art algorithms and a geometric based one (non-linear fitting), which is used as a ground truth, are provided.
Address San Francisco; CA; USA; June 2010
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1063-6919 ISBN 978-1-4244-6984-0 Medium
Area Expedition Conference CVPR
Notes ADAS Approved no
Call Number ADAS @ adas @ RoS2010a Serial 1303
Permanent link to this record
 

 
Author Mario Hernandez; Joao Sanchez; Jordi Vitria
Title Selected papers from Iberian Conference on Pattern Recognition and Image Analysis Type Book Whole
Year 2012 Publication Pattern Recognition Abbreviated Journal
Volume 45 Issue 9 Pages (down) 3047-3582
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-3203 ISBN Medium
Area Expedition Conference
Notes OR;MV Approved no
Call Number Admin @ si @ HSV2012 Serial 2069
Permanent link to this record
 

 
Author Albert Gordo; Jose Antonio Rodriguez; Florent Perronnin; Ernest Valveny
Title Leveraging category-level labels for instance-level image retrieval Type Conference Article
Year 2012 Publication 25th IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal
Volume Issue Pages (down) 3045-3052
Keywords
Abstract In this article, we focus on the problem of large-scale instance-level image retrieval. For efficiency reasons, it is common to represent an image by a fixed-length descriptor which is subsequently encoded into a small number of bits. We note that most encoding techniques include an unsupervised dimensionality reduction step. Our goal in this work is to learn a better subspace in a supervised manner. We especially raise the following question: “can category-level labels be used to learn such a subspace?” To answer this question, we experiment with four learning techniques: the first one is based on a metric learning framework, the second one on attribute representations, the third one on Canonical Correlation Analysis (CCA) and the fourth one on Joint Subspace and Classifier Learning (JSCL). While the first three approaches have been applied in the past to the image retrieval problem, we believe we are the first to show the usefulness of JSCL in this context. In our experiments, we use ImageNet as a source of category-level labels and report retrieval results on two standard dataseis: INRIA Holidays and the University of Kentucky benchmark. Our experimental study shows that metric learning and attributes do not lead to any significant improvement in retrieval accuracy, as opposed to CCA and JSCL. As an example, we report on Holidays an increase in accuracy from 39.3% to 48.6% with 32-dimensional representations. Overall JSCL is shown to yield the best results.
Address Providence, Rhode Island
Corporate Author Thesis
Publisher IEEE Xplore Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1063-6919 ISBN 978-1-4673-1226-4 Medium
Area Expedition Conference CVPR
Notes DAG Approved no
Call Number Admin @ si @ GRP2012 Serial 2050
Permanent link to this record
 

 
Author Lu Yu; Yongmei Cheng; Joost Van de Weijer
Title Weakly Supervised Domain-Specific Color Naming Based on Attention Type Conference Article
Year 2018 Publication 24th International Conference on Pattern Recognition Abbreviated Journal
Volume Issue Pages (down) 3019 - 3024
Keywords
Abstract The majority of existing color naming methods focuses on the eleven basic color terms of the English language. However, in many applications, different sets of color names are used for the accurate description of objects. Labeling data to learn these domain-specific color names is an expensive and laborious task. Therefore, in this article we aim to learn color names from weakly labeled data. For this purpose, we add an attention branch to the color naming network. The attention branch is used to modulate the pixel-wise color naming predictions of the network. In experiments, we illustrate that the attention branch correctly identifies the relevant regions. Furthermore, we show that our method obtains state-of-the-art results for pixel-wise and image-wise classification on the EBAY dataset and is able to learn color names for various domains.
Address Beijing; August 2018
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICPR
Notes LAMP; 600.109; 602.200; 600.120 Approved no
Call Number Admin @ si @ YCW2018 Serial 3243
Permanent link to this record
 

 
Author Ariel Amato; Mikhail Mozerov; Andrew Bagdanov; Jordi Gonzalez
Title Accurate Moving Cast Shadow Suppression Based on Local Color Constancy detection Type Journal Article
Year 2011 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP
Volume 20 Issue 10 Pages (down) 2954 - 2966
Keywords
Abstract This paper describes a novel framework for detection and suppression of properly shadowed regions for most possible scenarios occurring in real video sequences. Our approach requires no prior knowledge about the scene, nor is it restricted to specific scene structures. Furthermore, the technique can detect both achromatic and chromatic shadows even in the presence of camouflage that occurs when foreground regions are very similar in color to shadowed regions. The method exploits local color constancy properties due to reflectance suppression over shadowed regions. To detect shadowed regions in a scene, the values of the background image are divided by values of the current frame in the RGB color space. We show how this luminance ratio can be used to identify segments with low gradient constancy, which in turn distinguish shadows from foreground. Experimental results on a collection of publicly available datasets illustrate the superior performance of our method compared with the most sophisticated, state-of-the-art shadow detection algorithms. These results show that our approach is robust and accurate over a broad range of shadow types and challenging video conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1057-7149 ISBN Medium
Area Expedition Conference
Notes ISE Approved no
Call Number Admin @ si @ AMB2011 Serial 1716
Permanent link to this record
 

 
Author Mikhail Mozerov; Joost Van de Weijer
Title One-view occlusion detection for stereo matching with a fully connected CRF model Type Journal Article
Year 2019 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP
Volume 28 Issue 6 Pages (down) 2936-2947
Keywords Stereo matching; energy minimization; fully connected MRF model; geodesic distance filter
Abstract In this paper, we extend the standard belief propagation (BP) sequential technique proposed in the tree-reweighted sequential method [15] to the fully connected CRF models with the geodesic distance affinity. The proposed method has been applied to the stereo matching problem. Also a new approach to the BP marginal solution is proposed that we call one-view occlusion detection (OVOD). In contrast to the standard winner takes all (WTA) estimation, the proposed OVOD solution allows to find occluded regions in the disparity map and simultaneously improve the matching result. As a result we can perform only
one energy minimization process and avoid the cost calculation for the second view and the left-right check procedure. We show that the OVOD approach considerably improves results for cost augmentation and energy minimization techniques in comparison with the standard one-view affinity space implementation. We apply our method to the Middlebury data set and reach state-ofthe-art especially for median, average and mean squared error metrics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes LAMP; 600.098; 600.109; 602.133; 600.120 Approved no
Call Number Admin @ si @ MoW2019 Serial 3221
Permanent link to this record
 

 
Author Mohammed Al Rawi; Ernest Valveny
Title Compact and Efficient Multitask Learning in Vision, Language and Speech Type Conference Article
Year 2019 Publication IEEE International Conference on Computer Vision Workshops Abbreviated Journal
Volume Issue Pages (down) 2933-2942
Keywords
Abstract Across-domain multitask learning is a challenging area of computer vision and machine learning due to the intra-similarities among class distributions. Addressing this problem to cope with the human cognition system by considering inter and intra-class categorization and recognition complicates the problem even further. We propose in this work an effective holistic and hierarchical learning by using a text embedding layer on top of a deep learning model. We also propose a novel sensory discriminator approach to resolve the collisions between different tasks and domains. We then train the model concurrently on textual sentiment analysis, speech recognition, image classification, action recognition from video, and handwriting word spotting of two different scripts (Arabic and English). The model we propose successfully learned different tasks across multiple domains.
Address Seul; Korea; October 2019
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICCVW
Notes DAG; 600.121; 600.129 Approved no
Call Number Admin @ si @ RaV2019 Serial 3365
Permanent link to this record
 

 
Author Yunchao Gong; Svetlana Lazebnik; Albert Gordo; Florent Perronnin
Title Iterative quantization: A procrustean approach to learning binary codes for Large-Scale Image Retrieval Type Journal Article
Year 2012 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI
Volume 35 Issue 12 Pages (down) 2916-2929
Keywords
Abstract This paper addresses the problem of learning similarity-preserving binary codes for efficient similarity search in large-scale image collections. We formulate this problem in terms of finding a rotation of zero-centered data so as to minimize the quantization error of mapping this data to the vertices of a zero-centered binary hypercube, and propose a simple and efficient alternating minimization algorithm to accomplish this task. This algorithm, dubbed iterative quantization (ITQ), has connections to multi-class spectral clustering and to the orthogonal Procrustes problem, and it can be used both with unsupervised data embeddings such as PCA and supervised embeddings such as canonical correlation analysis (CCA). The resulting binary codes significantly outperform several other state-of-the-art methods. We also show that further performance improvements can result from transforming the data with a nonlinear kernel mapping prior to PCA or CCA. Finally, we demonstrate an application of ITQ to learning binary attributes or “classemes” on the ImageNet dataset.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0162-8828 ISBN 978-1-4577-0394-2 Medium
Area Expedition Conference
Notes DAG Approved no
Call Number Admin @ si @ GLG 2012b Serial 2008
Permanent link to this record
 

 
Author Josep Llados; Dimosthenis Karatzas; Joan Mas; Gemma Sanchez
Title A Generic Architecture for the Conversion of Document Collections into Semantically Annotated Digital Archives Type Journal
Year 2008 Publication Journal of Universal Computer Science Abbreviated Journal
Volume 14 Issue 18 Pages (down) 2912–2935
Keywords Median Graph, Graph Embedding, Graph Matching, Structural Pattern Recognition
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes DAG Approved no
Call Number DAG @ dag @ LKM2008 Serial 1142
Permanent link to this record
 

 
Author Ignasi Rius; Jordi Gonzalez; J. Varona; Xavier Roca
Title Action-specific motion prior for efficient bayesian 3D human body tracking Type Journal Article
Year 2009 Publication Pattern Recognition Abbreviated Journal PR
Volume 42 Issue 11 Pages (down) 2907–2921
Keywords
Abstract In this paper, we aim to reconstruct the 3D motion parameters of a human body
model from the known 2D positions of a reduced set of joints in the image plane.
Towards this end, an action-specific motion model is trained from a database of real
motion-captured performances. The learnt motion model is used within a particle
filtering framework as a priori knowledge on human motion. First, our dynamic
model guides the particles according to similar situations previously learnt. Then, the solution space is constrained so only feasible human postures are accepted as valid solutions at each time step. As a result, we are able to track the 3D configuration of the full human body from several cycles of walking motion sequences using only the 2D positions of a very reduced set of joints from lateral or frontal viewpoints.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-3203 ISBN Medium
Area Expedition Conference
Notes ISE Approved no
Call Number ISE @ ise @ RGV2009 Serial 1159
Permanent link to this record