|   | 
Details
   web
Records
Author David Vazquez; Jorge Bernal; F. Javier Sanchez; Gloria Fernandez Esparrach; Antonio Lopez; Adriana Romero; Michal Drozdzal; Aaron Courville
Title A Benchmark for Endoluminal Scene Segmentation of Colonoscopy Images Type Journal Article
Year 2017 Publication Journal of Healthcare Engineering Abbreviated Journal JHCE
Volume Issue Pages (down) 2040-2295
Keywords Colonoscopy images; Deep Learning; Semantic Segmentation
Abstract Colorectal cancer (CRC) is the third cause of cancer death world-wide. Currently, the standard approach to reduce CRC-related mortality is to perform regular screening in search for polyps and colonoscopy is the screening tool of choice. The main limitations of this screening procedure are polyp miss- rate and inability to perform visual assessment of polyp malignancy. These drawbacks can be reduced by designing Decision Support Systems (DSS) aim- ing to help clinicians in the different stages of the procedure by providing endoluminal scene segmentation. Thus, in this paper, we introduce an extended benchmark of colonoscopy image segmentation, with the hope of establishing a new strong benchmark for colonoscopy image analysis research. The proposed dataset consists of 4 relevant classes to inspect the endolumninal scene, tar- geting different clinical needs. Together with the dataset and taking advantage of advances in semantic segmentation literature, we provide new baselines by training standard fully convolutional networks (FCN). We perform a compar- ative study to show that FCN significantly outperform, without any further post-processing, prior results in endoluminal scene segmentation, especially with respect to polyp segmentation and localization.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ADAS; MV; 600.075; 600.085; 600.076; 601.281; 600.118 Approved no
Call Number VBS2017b Serial 2940
Permanent link to this record
 

 
Author Miquel Ferrer; Ernest Valveny; F. Serratosa
Title Median Graphs: A Genetic Approach based on New Theoretical Properties Type Journal Article
Year 2009 Publication Pattern Recognition Abbreviated Journal PR
Volume 42 Issue 9 Pages (down) 2003–2012
Keywords Median graph; Genetic search; Maximum common subgraph; Graph matching; Structural pattern recognition
Abstract Given a set of graphs, the median graph has been theoretically presented as a useful concept to infer a representative of the set. However, the computation of the median graph is a highly complex task and its practical application has been very limited up to now. In this work we present two major contributions. On one side, and from a theoretical point of view, we show new theoretical properties of the median graph. On the other side, using these new properties, we present a new approximate algorithm based on the genetic search, that improves the computation of the median graph. Finally, we perform a set of experiments on real data, where none of the existing algorithms for the median graph computation could be applied up to now due to their computational complexity. With these results, we show how the concept of the median graph can be used in real applications and leaves the box of the only-theoretical concepts, demonstrating, from a practical point of view, that can be a useful tool to represent a set of graphs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes DAG Approved no
Call Number DAG @ dag @ FVS2009b Serial 1167
Permanent link to this record
 

 
Author Javier Vazquez; Maria Vanrell; Ramon Baldrich; Francesc Tous
Title Color Constancy by Category Correlation Type Journal Article
Year 2012 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP
Volume 21 Issue 4 Pages (down) 1997-2007
Keywords
Abstract Finding color representations which are stable to illuminant changes is still an open problem in computer vision. Until now most approaches have been based on physical constraints or statistical assumptions derived from the scene, while very little attention has been paid to the effects that selected illuminants have
on the final color image representation. The novelty of this work is to propose
perceptual constraints that are computed on the corrected images. We define the
category hypothesis, which weights the set of feasible illuminants according to their ability to map the corrected image onto specific colors. Here we choose these colors as the universal color categories related to basic linguistic terms which have been psychophysically measured. These color categories encode natural color statistics, and their relevance across different cultures is indicated by the fact that they have received a common color name. From this category hypothesis we propose a fast implementation that allows the sampling of a large set of illuminants. Experiments prove that our method rivals current state-of-art performance without the need for training algorithmic parameters. Additionally, the method can be used as a framework to insert top-down information from other sources, thus opening further research directions in solving for color constancy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1057-7149 ISBN Medium
Area Expedition Conference
Notes CIC Approved no
Call Number Admin @ si @ VVB2012 Serial 1999
Permanent link to this record
 

 
Author Jaume Gibert; Ernest Valveny; Horst Bunke
Title Feature Selection on Node Statistics Based Embedding of Graphs Type Journal Article
Year 2012 Publication Pattern Recognition Letters Abbreviated Journal PRL
Volume 33 Issue 15 Pages (down) 1980–1990
Keywords Structural pattern recognition; Graph embedding; Feature ranking; PCA; Graph classification
Abstract Representing a graph with a feature vector is a common way of making statistical machine learning algorithms applicable to the domain of graphs. Such a transition from graphs to vectors is known as graphembedding. A key issue in graphembedding is to select a proper set of features in order to make the vectorial representation of graphs as strong and discriminative as possible. In this article, we propose features that are constructed out of frequencies of node label representatives. We first build a large set of features and then select the most discriminative ones according to different ranking criteria and feature transformation algorithms. On different classification tasks, we experimentally show that only a small significant subset of these features is needed to achieve the same classification rates as competing to state-of-the-art methods.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes DAG Approved no
Call Number Admin @ si @ GVB2012b Serial 1993
Permanent link to this record
 

 
Author Partha Pratim Roy; Umapada Pal; Josep Llados; Mathieu Nicolas Delalandre
Title Multi-oriented touching text character segmentation in graphical documents using dynamic programming Type Journal Article
Year 2012 Publication Pattern Recognition Abbreviated Journal PR
Volume 45 Issue 5 Pages (down) 1972-1983
Keywords
Abstract 2,292 JCR
The touching character segmentation problem becomes complex when touching strings are multi-oriented. Moreover in graphical documents sometimes characters in a single-touching string have different orientations. Segmentation of such complex touching is more challenging. In this paper, we present a scheme towards the segmentation of English multi-oriented touching strings into individual characters. When two or more characters touch, they generate a big cavity region in the background portion. Based on the convex hull information, at first, we use this background information to find some initial points for segmentation of a touching string into possible primitives (a primitive consists of a single character or part of a character). Next, the primitives are merged to get optimum segmentation. A dynamic programming algorithm is applied for this purpose using the total likelihood of characters as the objective function. A SVM classifier is used to find the likelihood of a character. To consider multi-oriented touching strings the features used in the SVM are invariant to character orientation. Experiments were performed in different databases of real and synthetic touching characters and the results show that the method is efficient in segmenting touching characters of arbitrary orientations and sizes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-3203 ISBN Medium
Area Expedition Conference
Notes DAG Approved no
Call Number Admin @ si @ RPL2012a Serial 2133
Permanent link to this record
 

 
Author Wenjuan Gong; Xuena Zhang; Jordi Gonzalez; Andrews Sobral; Thierry Bouwmans; Changhe Tu; El-hadi Zahzah
Title Human Pose Estimation from Monocular Images: A Comprehensive Survey Type Journal Article
Year 2016 Publication Sensors Abbreviated Journal SENS
Volume 16 Issue 12 Pages (down) 1966
Keywords human pose estimation; human bodymodels; generativemethods; discriminativemethods; top-down methods; bottom-up methods
Abstract Human pose estimation refers to the estimation of the location of body parts and how they are connected in an image. Human pose estimation from monocular images has wide applications (e.g., image indexing). Several surveys on human pose estimation can be found in the literature, but they focus on a certain category; for example, model-based approaches or human motion analysis, etc. As far as we know, an overall review of this problem domain has yet to be provided. Furthermore, recent advancements based on deep learning have brought novel algorithms for this problem. In this paper, a comprehensive survey of human pose estimation from monocular images is carried out including milestone works and recent advancements. Based on one standard pipeline for the solution of computer vision problems, this survey splits the problem into several modules: feature extraction and description, human body models, and modeling
methods. Problem modeling methods are approached based on two means of categorization in this survey. One way to categorize includes top-down and bottom-up methods, and another way includes generative and discriminative methods. Considering the fact that one direct application of human pose estimation is to provide initialization for automatic video surveillance, there are additional sections for motion-related methods in all modules: motion features, motion models, and motion-based methods. Finally, the paper also collects 26 publicly available data sets for validation and provides error measurement methods that are frequently used.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ISE; 600.098; 600.119 Approved no
Call Number Admin @ si @ GZG2016 Serial 2933
Permanent link to this record
 

 
Author Mariano Vazquez; Ruth Aris; Guillaume Hozeaux; R.Aubry; P.Villar;Jaume Garcia ; Debora Gil; Francesc Carreras
Title A massively parallel computational electrophysiology model of the heart Type Journal Article
Year 2011 Publication International Journal for Numerical Methods in Biomedical Engineering Abbreviated Journal IJNMBE
Volume 27 Issue Pages (down) 1911-1929
Keywords computational electrophysiology; parallelization; finite element methods
Abstract This paper presents a patient-sensitive simulation strategy capable of using the most efficient way the high-performance computational resources. The proposed strategy directly involves three different players: Computational Mechanics Scientists (CMS), Image Processing Scientists and Cardiologists, each one mastering its own expertise area within the project. This paper describes the general integrative scheme but focusing on the CMS side presents a massively parallel implementation of computational electrophysiology applied to cardiac tissue simulation. The paper covers different angles of the computational problem: equations, numerical issues, the algorithm and parallel implementation. The proposed methodology is illustrated with numerical simulations testing all the different possibilities, ranging from small domains up to very large ones. A key issue is the almost ideal scalability not only for large and complex problems but also for medium-size meshes. The explicit formulation is particularly well suited for solving this highly transient problems, with very short time-scale.
Address Swansea (UK)
Corporate Author John Wiley & Sons, Ltd. Thesis
Publisher John Wiley & Sons, Ltd. Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes IAM Approved no
Call Number IAM @ iam @ VAH2011 Serial 1198
Permanent link to this record
 

 
Author Albert Gordo; Florent Perronnin; Ernest Valveny
Title Large-scale document image retrieval and classification with runlength histograms and binary embeddings Type Journal Article
Year 2013 Publication Pattern Recognition Abbreviated Journal PR
Volume 46 Issue 7 Pages (down) 1898-1905
Keywords visual document descriptor; compression; large-scale; retrieval; classification
Abstract We present a new document image descriptor based on multi-scale runlength
histograms. This descriptor does not rely on layout analysis and can be
computed efficiently. We show how this descriptor can achieve state-of-theart
results on two very different public datasets in classification and retrieval
tasks. Moreover, we show how we can compress and binarize these descriptors
to make them suitable for large-scale applications. We can achieve state-ofthe-
art results in classification using binary descriptors of as few as 16 to 64
bits.
Address
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-3203 ISBN Medium
Area Expedition Conference
Notes DAG; 600.042; 600.045; 605.203 Approved no
Call Number Admin @ si @ GPV2013 Serial 2306
Permanent link to this record
 

 
Author Ana Garcia Rodriguez; Jorge Bernal; F. Javier Sanchez; Henry Cordova; Rodrigo Garces Duran; Cristina Rodriguez de Miguel; Gloria Fernandez Esparrach
Title Polyp fingerprint: automatic recognition of colorectal polyps’ unique features Type Journal Article
Year 2020 Publication Surgical Endoscopy and other Interventional Techniques Abbreviated Journal SEND
Volume 34 Issue 4 Pages (down) 1887-1889
Keywords
Abstract BACKGROUND:
Content-based image retrieval (CBIR) is an application of machine learning used to retrieve images by similarity on the basis of features. Our objective was to develop a CBIR system that could identify images containing the same polyp ('polyp fingerprint').

METHODS:
A machine learning technique called Bag of Words was used to describe each endoscopic image containing a polyp in a unique way. The system was tested with 243 white light images belonging to 99 different polyps (for each polyp there were at least two images representing it in two different temporal moments). Images were acquired in routine colonoscopies at Hospital Clínic using high-definition Olympus endoscopes. The method provided for each image the closest match within the dataset.

RESULTS:
The system matched another image of the same polyp in 221/243 cases (91%). No differences were observed in the number of correct matches according to Paris classification (protruded: 90.7% vs. non-protruded: 91.3%) and size (< 10 mm: 91.6% vs. > 10 mm: 90%).

CONCLUSIONS:
A CBIR system can match accurately two images containing the same polyp, which could be a helpful aid for polyp image recognition.

KEYWORDS:
Artificial intelligence; Colorectal polyps; Content-based image retrieval
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MV; no menciona Approved no
Call Number Admin @ si @ Serial 3403
Permanent link to this record
 

 
Author Xialei Liu; Joost Van de Weijer; Andrew Bagdanov
Title Exploiting Unlabeled Data in CNNs by Self-Supervised Learning to Rank Type Journal Article
Year 2019 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI
Volume 41 Issue 8 Pages (down) 1862-1878
Keywords Task analysis;Training;Image quality;Visualization;Uncertainty;Labeling;Neural networks;Learning from rankings;image quality assessment;crowd counting;active learning
Abstract For many applications the collection of labeled data is expensive laborious. Exploitation of unlabeled data during training is thus a long pursued objective of machine learning. Self-supervised learning addresses this by positing an auxiliary task (different, but related to the supervised task) for which data is abundantly available. In this paper, we show how ranking can be used as a proxy task for some regression problems. As another contribution, we propose an efficient backpropagation technique for Siamese networks which prevents the redundant computation introduced by the multi-branch network architecture. We apply our framework to two regression problems: Image Quality Assessment (IQA) and Crowd Counting. For both we show how to automatically generate ranked image sets from unlabeled data. Our results show that networks trained to regress to the ground truth targets for labeled data and to simultaneously learn to rank unlabeled data obtain significantly better, state-of-the-art results for both IQA and crowd counting. In addition, we show that measuring network uncertainty on the self-supervised proxy task is a good measure of informativeness of unlabeled data. This can be used to drive an algorithm for active learning and we show that this reduces labeling effort by up to 50 percent.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes LAMP; 600.109; 600.106; 600.120 Approved no
Call Number LWB2019 Serial 3267
Permanent link to this record
 

 
Author Ferran Diego; Daniel Ponsa; Joan Serrat; Antonio Lopez
Title Video Alignment for Change Detection Type Journal Article
Year 2011 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP
Volume 20 Issue 7 Pages (down) 1858-1869
Keywords video alignment
Abstract In this work, we address the problem of aligning two video sequences. Such alignment refers to synchronization, i.e., the establishment of temporal correspondence between frames of the first and second video, followed by spatial registration of all the temporally corresponding frames. Video synchronization and alignment have been attempted before, but most often in the relatively simple cases of fixed or rigidly attached cameras and simultaneous acquisition. In addition, restrictive assumptions have been applied, including linear time correspondence or the knowledge of the complete trajectories of corresponding scene points; to some extent, these assumptions limit the practical applicability of any solutions developed. We intend to solve the more general problem of aligning video sequences recorded by independently moving cameras that follow similar trajectories, based only on the fusion of image intensity and GPS information. The novelty of our approach is to pose the synchronization as a MAP inference problem on a Bayesian network including the observations from these two sensor types, which have been proved complementary. Alignment results are presented in the context of videos recorded from vehicles driving along the same track at different times, for different road types. In addition, we explore two applications of the proposed video alignment method, both based on change detection between aligned videos. One is the detection of vehicles, which could be of use in ADAS. The other is online difference spotting videos of surveillance rounds.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ADAS; IF Approved no
Call Number DPS 2011; ADAS @ adas @ dps2011 Serial 1705
Permanent link to this record
 

 
Author Marco Pedersoli; Andrea Vedaldi; Jordi Gonzalez; Xavier Roca
Title A coarse-to-fine approach for fast deformable object detection Type Journal Article
Year 2015 Publication Pattern Recognition Abbreviated Journal PR
Volume 48 Issue 5 Pages (down) 1844-1853
Keywords
Abstract We present a method that can dramatically accelerate object detection with part based models. The method is based on the observation that the cost of detection is likely to be dominated by the cost of matching each part to the image, and not by the cost of computing the optimal configuration of the parts as commonly assumed. Therefore accelerating detection requires minimizing the number of
part-to-image comparisons. To this end we propose a multiple-resolutions hierarchical part based model and a corresponding coarse-to-fine inference procedure that recursively eliminates from the search space unpromising part
placements. The method yields a ten-fold speedup over the standard dynamic programming approach and is complementary to the cascade-of-parts approach of [9]. Compared to the latter, our method does not have parameters to be determined empirically, which simplifies its use during the training of the model. Most importantly, the two techniques can be combined to obtain a very significant speedup, of two orders of magnitude in some cases. We evaluate our method extensively on the PASCAL VOC and INRIA datasets, demonstrating a very high increase in the detection speed with little degradation of the accuracy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ISE; 600.078; 602.005; 605.001; 302.012 Approved no
Call Number Admin @ si @ PVG2015 Serial 2628
Permanent link to this record
 

 
Author Debora Gil; Aura Hernandez-Sabate; Mireia Brunat;Steven Jansen; Jordi Martinez-Vilalta
Title Structure-preserving smoothing of biomedical images Type Journal Article
Year 2011 Publication Pattern Recognition Abbreviated Journal PR
Volume 44 Issue 9 Pages (down) 1842-1851
Keywords Non-linear smoothing; Differential geometry; Anatomical structures; segmentation; Cardiac magnetic resonance; Computerized tomography
Abstract Smoothing of biomedical images should preserve gray-level transitions between adjacent tissues, while restoring contours consistent with anatomical structures. Anisotropic diffusion operators are based on image appearance discontinuities (either local or contextual) and might fail at weak inter-tissue transitions. Meanwhile, the output of block-wise and morphological operations is prone to present a block structure due to the shape and size of the considered pixel neighborhood. In this contribution, we use differential geometry concepts to define a diffusion operator that restricts to image consistent level-sets. In this manner, the final state is a non-uniform intensity image presenting homogeneous inter-tissue transitions along anatomical structures, while smoothing intra-structure texture. Experiments on different types of medical images (magnetic resonance, computerized tomography) illustrate its benefit on a further process (such as segmentation) of images.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-3203 ISBN Medium
Area Expedition Conference
Notes IAM; ADAS Approved no
Call Number IAM @ iam @ GHB2011 Serial 1526
Permanent link to this record
 

 
Author Lichao Zhang; Abel Gonzalez-Garcia; Joost Van de Weijer; Martin Danelljan; Fahad Shahbaz Khan
Title Synthetic Data Generation for End-to-End Thermal Infrared Tracking Type Journal Article
Year 2019 Publication IEEE Transactions on Image Processing Abbreviated Journal TIP
Volume 28 Issue 4 Pages (down) 1837 - 1850
Keywords
Abstract The usage of both off-the-shelf and end-to-end trained deep networks have significantly improved the performance of visual tracking on RGB videos. However, the lack of large labeled datasets hampers the usage of convolutional neural networks for tracking in thermal infrared (TIR) images. Therefore, most state-of-the-art methods on tracking for TIR data are still based on handcrafted features. To address this problem, we propose to use image-to-image translation models. These models allow us to translate the abundantly available labeled RGB data to synthetic TIR data. We explore both the usage of paired and unpaired image translation models for this purpose. These methods provide us with a large labeled dataset of synthetic TIR sequences, on which we can train end-to-end optimal features for tracking. To the best of our knowledge, we are the first to train end-to-end features for TIR tracking. We perform extensive experiments on the VOT-TIR2017 dataset. We show that a network trained on a large dataset of synthetic TIR data obtains better performance than one trained on the available real TIR data. Combining both data sources leads to further improvement. In addition, when we combine the network with motion features, we outperform the state of the art with a relative gain of over 10%, clearly showing the efficiency of using synthetic data to train end-to-end TIR trackers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes LAMP; 600.141; 600.120 Approved no
Call Number Admin @ si @ YGW2019 Serial 3228
Permanent link to this record
 

 
Author Santiago Segui; Michal Drozdzal; Ekaterina Zaytseva; Fernando Azpiroz; Petia Radeva; Jordi Vitria
Title Detection of wrinkle frames in endoluminal videos using betweenness centrality measures for images Type Journal Article
Year 2014 Publication IEEE Transactions on Information Technology in Biomedicine Abbreviated Journal TITB
Volume 18 Issue 6 Pages (down) 1831-1838
Keywords Wireless Capsule Endoscopy; Small Bowel Motility Dysfunction; Contraction Detection; Structured Prediction; Betweenness Centrality
Abstract Intestinal contractions are one of the most important events to diagnose motility pathologies of the small intestine. When visualized by wireless capsule endoscopy (WCE), the sequence of frames that represents a contraction is characterized by a clear wrinkle structure in the central frames that corresponds to the folding of the intestinal wall. In this paper we present a new method to robustly detect wrinkle frames in full WCE videos by using a new mid-level image descriptor that is based on a centrality measure proposed for graphs. We present an extended validation, carried out in a very large database, that shows that the proposed method achieves state of the art performance for this task.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes OR; MILAB; 600.046;MV Approved no
Call Number Admin @ si @ SDZ2014 Serial 2385
Permanent link to this record