|   | 
Details
   web
Records
Author Saad Minhas; Zeba Khanam; Shoaib Ehsan; Klaus McDonald Maier; Aura Hernandez-Sabate
Title Weather Classification by Utilizing Synthetic Data Type Journal Article
Year 2022 Publication Sensors Abbreviated Journal SENS
Volume 22 Issue 9 Pages (up) 3193
Keywords Weather classification; synthetic data; dataset; autonomous car; computer vision; advanced driver assistance systems; deep learning; intelligent transportation systems
Abstract Weather prediction from real-world images can be termed a complex task when targeting classification using neural networks. Moreover, the number of images throughout the available datasets can contain a huge amount of variance when comparing locations with the weather those images are representing. In this article, the capabilities of a custom built driver simulator are explored specifically to simulate a wide range of weather conditions. Moreover, the performance of a new synthetic dataset generated by the above simulator is also assessed. The results indicate that the use of synthetic datasets in conjunction with real-world datasets can increase the training efficiency of the CNNs by as much as 74%. The article paves a way forward to tackle the persistent problem of bias in vision-based datasets.
Address 21 April 2022
Corporate Author Thesis
Publisher MDPI Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes IAM; 600.139; 600.159; 600.166; 600.145; Approved no
Call Number Admin @ si @ MKE2022 Serial 3761
Permanent link to this record
 

 
Author Dipam Goswami; J Schuster; Joost Van de Weijer; Didier Stricker
Title Attribution-aware Weight Transfer: A Warm-Start Initialization for Class-Incremental Semantic Segmentation Type Conference Article
Year 2023 Publication Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision Abbreviated Journal
Volume Issue Pages (up) 3195-3204
Keywords
Abstract Attribution-aware Weight Transfer: A Warm-Start Initialization for Class-Incremental Semantic Segmentation. D Goswami, R Schuster, J van de Weijer, D Stricker. Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2023, pp. 3195-3204
Address Waikoloa; Hawai; USA; January 2023
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference WACV
Notes LAMP Approved no
Call Number Admin @ si @ GSW2023 Serial 3901
Permanent link to this record
 

 
Author Vacit Oguz Yazici; Longlong Yu; Arnau Ramisa; Luis Herranz; Joost Van de Weijer
Title Main product detection with graph networks for fashion Type Journal Article
Year 2024 Publication Multimedia Tools and Applications Abbreviated Journal MTAP
Volume 83 Issue Pages (up) 3215–3231
Keywords
Abstract Computer vision has established a foothold in the online fashion retail industry. Main product detection is a crucial step of vision-based fashion product feed parsing pipelines, focused on identifying the bounding boxes that contain the product being sold in the gallery of images of the product page. The current state-of-the-art approach does not leverage the relations between regions in the image, and treats images of the same product independently, therefore not fully exploiting visual and product contextual information. In this paper, we propose a model that incorporates Graph Convolutional Networks (GCN) that jointly represent all detected bounding boxes in the gallery as nodes. We show that the proposed method is better than the state-of-the-art, especially, when we consider the scenario where title-input is missing at inference time and for cross-dataset evaluation, our method outperforms previous approaches by a large margin.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes LAMP; MACO; 600.147; 600.167; 600.164; 600.161; 600.141; 601.309 Approved no
Call Number Admin @ si @ YYR2024 Serial 4017
Permanent link to this record
 

 
Author Emanuel Sanchez Aimar; Petia Radeva; Mariella Dimiccoli
Title Social Relation Recognition in Egocentric Photostreams Type Conference Article
Year 2019 Publication 26th International Conference on Image Processing Abbreviated Journal
Volume Issue Pages (up) 3227-3231
Keywords
Abstract This paper proposes an approach to automatically categorize the social interactions of a user wearing a photo-camera (2fpm), by relying solely on what the camera is seeing. The problem is challenging due to the overwhelming complexity of social life and the extreme intra-class variability of social interactions captured under unconstrained conditions. We adopt the formalization proposed in Bugental's social theory, that groups human relations into five social domains with related categories. Our method is a new deep learning architecture that exploits the hierarchical structure of the label space and relies on a set of social attributes estimated at frame level to provide a semantic representation of social interactions. Experimental results on the new EgoSocialRelation dataset demonstrate the effectiveness of our proposal.
Address Taipei; Taiwan; September 2019
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICIP
Notes MILAB; no menciona Approved no
Call Number Admin @ si @ SRD2019 Serial 3370
Permanent link to this record
 

 
Author German Ros; Laura Sellart; Joanna Materzynska; David Vazquez; Antonio Lopez
Title The SYNTHIA Dataset: A Large Collection of Synthetic Images for Semantic Segmentation of Urban Scenes Type Conference Article
Year 2016 Publication 29th IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal
Volume Issue Pages (up) 3234-3243
Keywords Domain Adaptation; Autonomous Driving; Virtual Data; Semantic Segmentation
Abstract Vision-based semantic segmentation in urban scenarios is a key functionality for autonomous driving. The irruption of deep convolutional neural networks (DCNNs) allows to foresee obtaining reliable classifiers to perform such a visual task. However, DCNNs require to learn many parameters from raw images; thus, having a sufficient amount of diversified images with this class annotations is needed. These annotations are obtained by a human cumbersome labour specially challenging for semantic segmentation, since pixel-level annotations are required. In this paper, we propose to use a virtual world for automatically generating realistic synthetic images with pixel-level annotations. Then, we address the question of how useful can be such data for the task of semantic segmentation; in particular, when using a DCNN paradigm. In order to answer this question we have generated a synthetic diversified collection of urban images, named SynthCity, with automatically generated class annotations. We use SynthCity in combination with publicly available real-world urban images with manually provided annotations. Then, we conduct experiments on a DCNN setting that show how the inclusion of SynthCity in the training stage significantly improves the performance of the semantic segmentation task
Address Las Vegas; USA; June 2016
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPR
Notes ADAS; 600.085; 600.082; 600.076 Approved no
Call Number ADAS @ adas @ RSM2016 Serial 2739
Permanent link to this record
 

 
Author Marco Buzzelli; Joost Van de Weijer; Raimondo Schettini
Title Learning Illuminant Estimation from Object Recognition Type Conference Article
Year 2018 Publication 25th International Conference on Image Processing Abbreviated Journal
Volume Issue Pages (up) 3234 - 3238
Keywords Illuminant estimation; computational color constancy; semi-supervised learning; deep learning; convolutional neural networks
Abstract In this paper we present a deep learning method to estimate the illuminant of an image. Our model is not trained with illuminant annotations, but with the objective of improving performance on an auxiliary task such as object recognition. To the best of our knowledge, this is the first example of a deep
learning architecture for illuminant estimation that is trained without ground truth illuminants. We evaluate our solution on standard datasets for color constancy, and compare it with state of the art methods. Our proposal is shown to outperform most deep learning methods in a cross-dataset evaluation
setup, and to present competitive results in a comparison with parametric solutions.
Address Athens; Greece; October 2018
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICIP
Notes LAMP; 600.109; 600.120 Approved no
Call Number Admin @ si @ BWS2018 Serial 3157
Permanent link to this record
 

 
Author Cristhian A. Aguilera-Carrasco; Cristhian Aguilera; Cristobal A. Navarro; Angel Sappa
Title Fast CNN Stereo Depth Estimation through Embedded GPU Devices Type Journal Article
Year 2020 Publication Sensors Abbreviated Journal SENS
Volume 20 Issue 11 Pages (up) 3249
Keywords stereo matching; deep learning; embedded GPU
Abstract Current CNN-based stereo depth estimation models can barely run under real-time constraints on embedded graphic processing unit (GPU) devices. Moreover, state-of-the-art evaluations usually do not consider model optimization techniques, being that it is unknown what is the current potential on embedded GPU devices. In this work, we evaluate two state-of-the-art models on three different embedded GPU devices, with and without optimization methods, presenting performance results that illustrate the actual capabilities of embedded GPU devices for stereo depth estimation. More importantly, based on our evaluation, we propose the use of a U-Net like architecture for postprocessing the cost-volume, instead of a typical sequence of 3D convolutions, drastically augmenting the runtime speed of current models. In our experiments, we achieve real-time inference speed, in the range of 5–32 ms, for 1216 × 368 input stereo images on the Jetson TX2, Jetson Xavier, and Jetson Nano embedded devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MSIAU; 600.122 Approved no
Call Number Admin @ si @ AAN2020 Serial 3428
Permanent link to this record
 

 
Author Eduardo Aguilar; Beatriz Remeseiro; Marc Bolaños; Petia Radeva
Title Grab, Pay, and Eat: Semantic Food Detection for Smart Restaurants Type Journal Article
Year 2018 Publication IEEE Transactions on Multimedia Abbreviated Journal
Volume 20 Issue 12 Pages (up) 3266 - 3275
Keywords
Abstract The increase in awareness of people towards their nutritional habits has drawn considerable attention to the field of automatic food analysis. Focusing on self-service restaurants environment, automatic food analysis is not only useful for extracting nutritional information from foods selected by customers, it is also of high interest to speed up the service solving the bottleneck produced at the cashiers in times of high demand. In this paper, we address the problem of automatic food tray analysis in canteens and restaurants environment, which consists in predicting multiple foods placed on a tray image. We propose a new approach for food analysis based on convolutional neural networks, we name Semantic Food Detection, which integrates in the same framework food localization, recognition and segmentation. We demonstrate that our method improves the state of the art food detection by a considerable margin on the public dataset UNIMIB2016 achieving about 90% in terms of F-measure, and thus provides a significant technological advance towards the automatic billing in restaurant environments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes MILAB; no proj Approved no
Call Number Admin @ si @ ARB2018 Serial 3236
Permanent link to this record
 

 
Author Reza Azad; Afshin Bozorgpour; Maryam Asadi-Aghbolaghi; Dorit Merhof; Sergio Escalera
Title Deep Frequency Re-Calibration U-Net for Medical Image Segmentation Type Conference Article
Year 2021 Publication IEEE/CVF International Conference on Computer Vision Workshops Abbreviated Journal
Volume Issue Pages (up) 3274-3283
Keywords
Abstract We present a novel solution to the garment animation problem through deep learning. Our contribution allows animating any template outfit with arbitrary topology and geometric complexity. Recent works develop models for garment edition, resizing and animation at the same time by leveraging the support body model (encoding garments as body homotopies). This leads to complex engineering solutions that suffer from scalability, applicability and compatibility. By limiting our scope to garment animation only, we are able to propose a simple model that can animate any outfit, independently of its topology, vertex order or connectivity. Our proposed architecture maps outfits to animated 3D models into the standard format for 3D animation (blend weights and blend shapes matrices), automatically providing of compatibility with any graphics engine. We also propose a methodology to complement supervised learning with an unsupervised physically based learning that implicitly solves collisions and enhances cloth quality.
Address VIRTUAL; October 2021
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICCVW
Notes HUPBA; no proj Approved no
Call Number Admin @ si @ ABA2021 Serial 3645
Permanent link to this record
 

 
Author Josep M. Gonfaus; Xavier Boix; Joost Van de Weijer; Andrew Bagdanov; Joan Serrat; Jordi Gonzalez
Title Harmony Potentials for Joint Classification and Segmentation Type Conference Article
Year 2010 Publication 23rd IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal
Volume Issue Pages (up) 3280–3287
Keywords
Abstract Hierarchical conditional random fields have been successfully applied to object segmentation. One reason is their ability to incorporate contextual information at different scales. However, these models do not allow multiple labels to be assigned to a single node. At higher scales in the image, this yields an oversimplified model, since multiple classes can be reasonable expected to appear within one region. This simplified model especially limits the impact that observations at larger scales may have on the CRF model. Neglecting the information at larger scales is undesirable since class-label estimates based on these scales are more reliable than at smaller, noisier scales. To address this problem, we propose a new potential, called harmony potential, which can encode any possible combination of class labels. We propose an effective sampling strategy that renders tractable the underlying optimization problem. Results show that our approach obtains state-of-the-art results on two challenging datasets: Pascal VOC 2009 and MSRC-21.
Address San Francisco CA, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1063-6919 ISBN 978-1-4244-6984-0 Medium
Area Expedition Conference CVPR
Notes ADAS;CIC;ISE Approved no
Call Number ADAS @ adas @ GBW2010 Serial 1296
Permanent link to this record
 

 
Author Carlos Martin-Isla; Victor M Campello; Cristian Izquierdo; Kaisar Kushibar; Carla Sendra Balcells; Polyxeni Gkontra; Alireza Sojoudi; Mitchell J Fulton; Tewodros Weldebirhan Arega; Kumaradevan Punithakumar; Lei Li; Xiaowu Sun; Yasmina Al Khalil; Di Liu; Sana Jabbar; Sandro Queiros; Francesco Galati; Moona Mazher; Zheyao Gao; Marcel Beetz; Lennart Tautz; Christoforos Galazis; Marta Varela; Markus Hullebrand; Vicente Grau; Xiahai Zhuang; Domenec Puig; Maria A Zuluaga; Hassan Mohy Ud Din; Dimitris Metaxas; Marcel Breeuwer; Rob J van der Geest; Michelle Noga; Stephanie Bricq; Mark E Rentschler; Andrea Guala; Steffen E Petersen; Sergio Escalera; Jose F Rodriguez Palomares; Karim Lekadir
Title Deep Learning Segmentation of the Right Ventricle in Cardiac MRI: The M&ms Challenge Type Journal Article
Year 2023 Publication IEEE Journal of Biomedical and Health Informatics Abbreviated Journal JBHI
Volume 27 Issue 7 Pages (up) 3302-3313
Keywords
Abstract In recent years, several deep learning models have been proposed to accurately quantify and diagnose cardiac pathologies. These automated tools heavily rely on the accurate segmentation of cardiac structures in MRI images. However, segmentation of the right ventricle is challenging due to its highly complex shape and ill-defined borders. Hence, there is a need for new methods to handle such structure's geometrical and textural complexities, notably in the presence of pathologies such as Dilated Right Ventricle, Tricuspid Regurgitation, Arrhythmogenesis, Tetralogy of Fallot, and Inter-atrial Communication. The last MICCAI challenge on right ventricle segmentation was held in 2012 and included only 48 cases from a single clinical center. As part of the 12th Workshop on Statistical Atlases and Computational Models of the Heart (STACOM 2021), the M&Ms-2 challenge was organized to promote the interest of the research community around right ventricle segmentation in multi-disease, multi-view, and multi-center cardiac MRI. Three hundred sixty CMR cases, including short-axis and long-axis 4-chamber views, were collected from three Spanish hospitals using nine different scanners from three different vendors, and included a diverse set of right and left ventricle pathologies. The solutions provided by the participants show that nnU-Net achieved the best results overall. However, multi-view approaches were able to capture additional information, highlighting the need to integrate multiple cardiac diseases, views, scanners, and acquisition protocols to produce reliable automatic cardiac segmentation algorithms.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HUPBA Approved no
Call Number Admin @ si @ MCI2023 Serial 3880
Permanent link to this record
 

 
Author Fahad Shahbaz Khan; Muhammad Anwer Rao; Joost Van de Weijer; Andrew Bagdanov; Maria Vanrell; Antonio Lopez
Title Color Attributes for Object Detection Type Conference Article
Year 2012 Publication 25th IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal
Volume Issue Pages (up) 3306-3313
Keywords pedestrian detection
Abstract State-of-the-art object detectors typically use shape information as a low level feature representation to capture the local structure of an object. This paper shows that early fusion of shape and color, as is popular in image classification,
leads to a significant drop in performance for object detection. Moreover, such approaches also yields suboptimal results for object categories with varying importance of color and shape.
In this paper we propose the use of color attributes as an explicit color representation for object detection. Color attributes are compact, computationally efficient, and when combined with traditional shape features provide state-ofthe-
art results for object detection. Our method is tested on the PASCAL VOC 2007 and 2009 datasets and results clearly show that our method improves over state-of-the-art techniques despite its simplicity. We also introduce a new dataset consisting of cartoon character images in which color plays a pivotal role. On this dataset, our approach yields a significant gain of 14% in mean AP over conventional state-of-the-art methods.
Address Providence; Rhode Island; USA;
Corporate Author Thesis
Publisher IEEE Xplore Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1063-6919 ISBN 978-1-4673-1226-4 Medium
Area Expedition Conference CVPR
Notes ADAS; CIC; Approved no
Call Number Admin @ si @ KRW2012 Serial 1935
Permanent link to this record
 

 
Author Fei Yang; Kai Wang; Joost Van de Weijer
Title ScrollNet: DynamicWeight Importance for Continual Learning Type Conference Article
Year 2023 Publication Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops Abbreviated Journal
Volume Issue Pages (up) 3345-3355
Keywords
Abstract The principle underlying most existing continual learning (CL) methods is to prioritize stability by penalizing changes in parameters crucial to old tasks, while allowing for plasticity in other parameters. The importance of weights for each task can be determined either explicitly through learning a task-specific mask during training (e.g., parameter isolation-based approaches) or implicitly by introducing a regularization term (e.g., regularization-based approaches). However, all these methods assume that the importance of weights for each task is unknown prior to data exposure. In this paper, we propose ScrollNet as a scrolling neural network for continual learning. ScrollNet can be seen as a dynamic network that assigns the ranking of weight importance for each task before data exposure, thus achieving a more favorable stability-plasticity tradeoff during sequential task learning by reassigning this ranking for different tasks. Additionally, we demonstrate that ScrollNet can be combined with various CL methods, including regularization-based and replay-based approaches. Experimental results on CIFAR100 and TinyImagenet datasets show the effectiveness of our proposed method.
Address Paris; France; October 2023
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICCVW
Notes LAMP Approved no
Call Number Admin @ si @ WWW2023 Serial 3945
Permanent link to this record
 

 
Author Muhammad Muzzamil Luqman; Thierry Brouard; Jean-Yves Ramel; Josep Llados
Title A Content Spotting System For Line Drawing Graphic Document Images Type Conference Article
Year 2010 Publication 20th International Conference on Pattern Recognition Abbreviated Journal
Volume 20 Issue Pages (up) 3420–3423
Keywords
Abstract We present a content spotting system for line drawing graphic document images. The proposed system is sufficiently domain independent and takes the keyword based information retrieval for graphic documents, one step forward, to Query By Example (QBE) and focused retrieval. During offline learning mode: we vectorize the documents in the repository, represent them by attributed relational graphs, extract regions of interest (ROIs) from them, convert each ROI to a fuzzy structural signature, cluster similar signatures to form ROI classes and build an index for the repository. During online querying mode: a Bayesian network classifier recognizes the ROIs in the query image and the corresponding documents are fetched by looking up in the repository index. Experimental results are presented for synthetic images of architectural and electronic documents.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-4651 ISBN 978-1-4244-7542-1 Medium
Area Expedition Conference ICPR
Notes DAG Approved no
Call Number DAG @ dag @ LBR2010b Serial 1460
Permanent link to this record
 

 
Author Jun Wan; Chi Lin; Longyin Wen; Yunan Li; Qiguang Miao; Sergio Escalera; Gholamreza Anbarjafari; Isabelle Guyon; Guodong Guo; Stan Z. Li
Title ChaLearn Looking at People: IsoGD and ConGD Large-scale RGB-D Gesture Recognition Type Journal Article
Year 2022 Publication IEEE Transactions on Cybernetics Abbreviated Journal TCIBERN
Volume 52 Issue 5 Pages (up) 3422-3433
Keywords
Abstract The ChaLearn large-scale gesture recognition challenge has been run twice in two workshops in conjunction with the International Conference on Pattern Recognition (ICPR) 2016 and International Conference on Computer Vision (ICCV) 2017, attracting more than 200 teams round the world. This challenge has two tracks, focusing on isolated and continuous gesture recognition, respectively. This paper describes the creation of both benchmark datasets and analyzes the advances in large-scale gesture recognition based on these two datasets. We discuss the challenges of collecting large-scale ground-truth annotations of gesture recognition, and provide a detailed analysis of the current state-of-the-art methods for large-scale isolated and continuous gesture recognition based on RGB-D video sequences. In addition to recognition rate and mean jaccard index (MJI) as evaluation metrics used in our previous challenges, we also introduce the corrected segmentation rate (CSR) metric to evaluate the performance of temporal segmentation for continuous gesture recognition. Furthermore, we propose a bidirectional long short-term memory (Bi-LSTM) baseline method, determining the video division points based on the skeleton points extracted by convolutional pose machine (CPM). Experiments demonstrate that the proposed Bi-LSTM outperforms the state-of-the-art methods with an absolute improvement of 8.1% (from 0.8917 to 0.9639) of CSR.
Address May 2022
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes HUPBA; no menciona Approved no
Call Number Admin @ si @ WLW2022 Serial 3522
Permanent link to this record