toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Pau Riba; Adria Molina; Lluis Gomez; Oriol Ramos Terrades; Josep Llados edit   pdf
doi  openurl
  Title Learning to Rank Words: Optimizing Ranking Metrics for Word Spotting Type Conference Article
  Year 2021 Publication 16th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume 12822 Issue Pages 381–395  
  Keywords  
  Abstract In this paper, we explore and evaluate the use of ranking-based objective functions for learning simultaneously a word string and a word image encoder. We consider retrieval frameworks in which the user expects a retrieval list ranked according to a defined relevance score. In the context of a word spotting problem, the relevance score has been set according to the string edit distance from the query string. We experimentally demonstrate the competitive performance of the proposed model on query-by-string word spotting for both, handwritten and real scene word images. We also provide the results for query-by-example word spotting, although it is not the main focus of this work.  
  Address Lausanne; Suissa; September 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor (up)  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.121; 600.140; 110.312 Approved no  
  Call Number Admin @ si @ RMG2021 Serial 3572  
Permanent link to this record
 

 
Author Sanket Biswas; Pau Riba; Josep Llados; Umapada Pal edit   pdf
doi  openurl
  Title DocSynth: A Layout Guided Approach for Controllable Document Image Synthesis Type Conference Article
  Year 2021 Publication 16th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume 12823 Issue Pages 555–568  
  Keywords  
  Abstract Despite significant progress on current state-of-the-art image generation models, synthesis of document images containing multiple and complex object layouts is a challenging task. This paper presents a novel approach, called DocSynth, to automatically synthesize document images based on a given layout. In this work, given a spatial layout (bounding boxes with object categories) as a reference by the user, our proposed DocSynth model learns to generate a set of realistic document images consistent with the defined layout. Also, this framework has been adapted to this work as a superior baseline model for creating synthetic document image datasets for augmenting real data during training for document layout analysis tasks. Different sets of learning objectives have been also used to improve the model performance. Quantitatively, we also compare the generated results of our model with real data using standard evaluation metrics. The results highlight that our model can successfully generate realistic and diverse document images with multiple objects. We also present a comprehensive qualitative analysis summary of the different scopes of synthetic image generation tasks. Lastly, to our knowledge this is the first work of its kind.  
  Address Lausanne; Suissa; September 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor (up)  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.121; 600.140; 110.312 Approved no  
  Call Number Admin @ si @ BRL2021a Serial 3573  
Permanent link to this record
 

 
Author Sanket Biswas; Pau Riba; Josep Llados; Umapada Pal edit   pdf
url  doi
openurl 
  Title Beyond Document Object Detection: Instance-Level Segmentation of Complex Layouts Type Journal Article
  Year 2021 Publication International Journal on Document Analysis and Recognition Abbreviated Journal IJDAR  
  Volume 24 Issue Pages 269–281  
  Keywords  
  Abstract Information extraction is a fundamental task of many business intelligence services that entail massive document processing. Understanding a document page structure in terms of its layout provides contextual support which is helpful in the semantic interpretation of the document terms. In this paper, inspired by the progress of deep learning methodologies applied to the task of object recognition, we transfer these models to the specific case of document object detection, reformulating the traditional problem of document layout analysis. Moreover, we importantly contribute to prior arts by defining the task of instance segmentation on the document image domain. An instance segmentation paradigm is especially important in complex layouts whose contents should interact for the proper rendering of the page, i.e., the proper text wrapping around an image. Finally, we provide an extensive evaluation, both qualitative and quantitative, that demonstrates the superior performance of the proposed methodology over the current state of the art.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor (up)  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.121; 600.140; 110.312 Approved no  
  Call Number Admin @ si @ BRL2021b Serial 3574  
Permanent link to this record
 

 
Author Diego Velazquez; Pau Rodriguez; Josep M. Gonfaus; Xavier Roca; Jordi Gonzalez edit  url
openurl 
  Title A Closer Look at Embedding Propagation for Manifold Smoothing Type Journal Article
  Year 2022 Publication Journal of Machine Learning Research Abbreviated Journal JMLR  
  Volume 23 Issue 252 Pages 1-27  
  Keywords Regularization; emi-supervised learning; self-supervised learning; adversarial robustness; few-shot classification  
  Abstract Supervised training of neural networks requires a large amount of manually annotated data and the resulting networks tend to be sensitive to out-of-distribution (OOD) data.
Self- and semi-supervised training schemes reduce the amount of annotated data required during the training process. However, OOD generalization remains a major challenge for most methods. Strategies that promote smoother decision boundaries play an important role in out-of-distribution generalization. For example, embedding propagation (EP) for manifold smoothing has recently shown to considerably improve the OOD performance for few-shot classification. EP achieves smoother class manifolds by building a graph from sample embeddings and propagating information through the nodes in an unsupervised manner. In this work, we extend the original EP paper providing additional evidence and experiments showing that it attains smoother class embedding manifolds and improves results in settings beyond few-shot classification. Concretely, we show that EP improves the robustness of neural networks against multiple adversarial attacks as well as semi- and
self-supervised learning performance.
 
  Address 9/2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor (up)  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Admin @ si @ VRG2022 Serial 3762  
Permanent link to this record
 

 
Author Kai Wang; Joost Van de Weijer; Luis Herranz edit   pdf
url  openurl
  Title ACAE-REMIND for online continual learning with compressed feature replay Type Journal Article
  Year 2021 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 150 Issue Pages 122-129  
  Keywords online continual learning; autoencoders; vector quantization  
  Abstract Online continual learning aims to learn from a non-IID stream of data from a number of different tasks, where the learner is only allowed to consider data once. Methods are typically allowed to use a limited buffer to store some of the images in the stream. Recently, it was found that feature replay, where an intermediate layer representation of the image is stored (or generated) leads to superior results than image replay, while requiring less memory. Quantized exemplars can further reduce the memory usage. However, a drawback of these methods is that they use a fixed (or very intransigent) backbone network. This significantly limits the learning of representations that can discriminate between all tasks. To address this problem, we propose an auxiliary classifier auto-encoder (ACAE) module for feature replay at intermediate layers with high compression rates. The reduced memory footprint per image allows us to save more exemplars for replay. In our experiments, we conduct task-agnostic evaluation under online continual learning setting and get state-of-the-art performance on ImageNet-Subset, CIFAR100 and CIFAR10 dataset.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor (up)  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; 600.147; 601.379; 600.120; 600.141 Approved no  
  Call Number Admin @ si @ WWH2021 Serial 3575  
Permanent link to this record
 

 
Author Patricia Suarez; Angel Sappa; Boris X. Vintimilla; Riad I. Hammoud edit   pdf
url  doi
openurl 
  Title Cycle Generative Adversarial Network: Towards A Low-Cost Vegetation Index Estimation Type Conference Article
  Year 2021 Publication 28th IEEE International Conference on Image Processing Abbreviated Journal  
  Volume Issue Pages 19-22  
  Keywords  
  Abstract This paper presents a novel unsupervised approach to estimate the Normalized Difference Vegetation Index (NDVI). The NDVI is obtained as the ratio between information from the visible and near infrared spectral bands; in the current work, the NDVI is estimated just from an image of the visible spectrum through a Cyclic Generative Adversarial Network (CyclicGAN). This unsupervised architecture learns to estimate the NDVI index by means of an image translation between the red channel of a given RGB image and the NDVI unpaired index’s image. The translation is obtained by means of a ResNET architecture and a multiple loss function. Experimental results obtained with this unsupervised scheme show the validity of the implemented model. Additionally, comparisons with the state of the art approaches are provided showing improvements with the proposed approach.  
  Address Anchorage-Alaska; USA; September 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor (up)  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICIP  
  Notes MSIAU; 600.130; 600.122; 601.349 Approved no  
  Call Number Admin @ si @ SSV2021b Serial 3579  
Permanent link to this record
 

 
Author Rafael E. Rivadeneira; Angel Sappa; Boris X. Vintimilla; Sabari Nathan; Priya Kansal; Armin Mehri; Parichehr Behjati Ardakani; A.Dalal; A.Akula; D.Sharma; S.Pandey; B.Kumar; J.Yao; R.Wu; KFeng; N.Li; Y.Zhao; H.Patel; V. Chudasama; K.Pjajapati; A.Sarvaiya; K.Upla; K.Raja; R.Ramachandra; C.Bush; F.Almasri; T.Vandamme; O.Debeir; N.Gutierrez; Q.Nguyen; W.Beksi edit   pdf
url  doi
openurl 
  Title Thermal Image Super-Resolution Challenge – PBVS 2021 Type Conference Article
  Year 2021 Publication Conference on Computer Vision and Pattern Recognition Workshops Abbreviated Journal  
  Volume Issue Pages 4359-4367  
  Keywords  
  Abstract This paper presents results from the second Thermal Image Super-Resolution (TISR) challenge organized in the framework of the Perception Beyond the Visible Spectrum (PBVS) 2021 workshop. For this second edition, the same thermal image dataset considered during the first challenge has been used; only mid-resolution (MR) and high-resolution (HR) sets have been considered. The dataset consists of 951 training images and 50 testing images for each resolution. A set of 20 images for each resolution is kept aside for evaluation. The two evaluation methodologies proposed for the first challenge are also considered in this opportunity. The first evaluation task consists of measuring the PSNR and SSIM between the obtained SR image and the corresponding ground truth (i.e., the HR thermal image downsampled by four). The second evaluation also consists of measuring the PSNR and SSIM, but in this case, considers the x2 SR obtained from the given MR thermal image; this evaluation is performed between the SR image with respect to the semi-registered HR image, which has been acquired with another camera. The results outperformed those from the first challenge, thus showing an improvement in both evaluation metrics.  
  Address Virtual; June 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor (up)  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPRW  
  Notes MSIAU; 600.130; 600.122 Approved no  
  Call Number Admin @ si @ RSV2021 Serial 3581  
Permanent link to this record
 

 
Author Armin Mehri; Parichehr Behjati Ardakani; Angel Sappa edit   pdf
url  doi
openurl 
  Title MPRNet: Multi-Path Residual Network for Lightweight Image Super Resolution Type Conference Article
  Year 2021 Publication IEEE Winter Conference on Applications of Computer Vision Abbreviated Journal  
  Volume Issue Pages 2703-2712  
  Keywords  
  Abstract Lightweight super resolution networks have extremely importance for real-world applications. In recent years several SR deep learning approaches with outstanding achievement have been introduced by sacrificing memory and computational cost. To overcome this problem, a novel lightweight super resolution network is proposed, which improves the SOTA performance in lightweight SR and performs roughly similar to computationally expensive networks. Multi-Path Residual Network designs with a set of Residual concatenation Blocks stacked with Adaptive Residual Blocks: ($i$) to adaptively extract informative features and learn more expressive spatial context information; ($ii$) to better leverage multi-level representations before up-sampling stage; and ($iii$) to allow an efficient information and gradient flow within the network. The proposed architecture also contains a new attention mechanism, Two-Fold Attention Module, to maximize the representation ability of the model. Extensive experiments show the superiority of our model against other SOTA SR approaches.  
  Address Virtual; January 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor (up)  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WACV  
  Notes MSIAU; 600.130; 600.122 Approved no  
  Call Number Admin @ si @ MAS2021b Serial 3582  
Permanent link to this record
 

 
Author Armin Mehri; Parichehr Behjati Ardakani; Angel Sappa edit   pdf
url  doi
openurl 
  Title LiNet: A Lightweight Network for Image Super Resolution Type Conference Article
  Year 2021 Publication 25th International Conference on Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 7196-7202  
  Keywords  
  Abstract This paper proposes a new lightweight network, LiNet, that enhancing technical efficiency in lightweight super resolution and operating approximately like very large and costly networks in terms of number of network parameters and operations. The proposed architecture allows the network to learn more abstract properties by avoiding low-level information via multiple links. LiNet introduces a Compact Dense Module, which contains set of inner and outer blocks, to efficiently extract meaningful information, to better leverage multi-level representations before upsampling stage, and to allow an efficient information and gradient flow within the network. Experiments on benchmark datasets show that the proposed LiNet achieves favorable performance against lightweight state-of-the-art methods.  
  Address Virtual; January 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor (up)  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MSIAU; 600.130; 600.122 Approved no  
  Call Number Admin @ si @ MAS2021a Serial 3583  
Permanent link to this record
 

 
Author Hannes Mueller; Andre Groeger; Jonathan Hersh; Andrea Matranga; Joan Serrat edit   pdf
url  doi
openurl 
  Title Monitoring war destruction from space using machine learning Type Journal Article
  Year 2021 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal PNAS  
  Volume 118 Issue 23 Pages e2025400118  
  Keywords  
  Abstract Existing data on building destruction in conflict zones rely on eyewitness reports or manual detection, which makes it generally scarce, incomplete, and potentially biased. This lack of reliable data imposes severe limitations for media reporting, humanitarian relief efforts, human-rights monitoring, reconstruction initiatives, and academic studies of violent conflict. This article introduces an automated method of measuring destruction in high-resolution satellite images using deep-learning techniques combined with label augmentation and spatial and temporal smoothing, which exploit the underlying spatial and temporal structure of destruction. As a proof of concept, we apply this method to the Syrian civil war and reconstruct the evolution of damage in major cities across the country. Our approach allows generating destruction data with unprecedented scope, resolution, and frequency—and makes use of the ever-higher frequency at which satellite imagery becomes available.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor (up)  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes ADAS; 600.118 Approved no  
  Call Number Admin @ si @ MGH2021 Serial 3584  
Permanent link to this record
 

 
Author Bartlomiej Twardowski; Pawel Zawistowski; Szymon Zaborowski edit   pdf
url  openurl
  Title Metric Learning for Session-Based Recommendations Type Conference Article
  Year 2021 Publication 43rd edition of the annual BCS-IRSG European Conference on Information Retrieval Abbreviated Journal  
  Volume 12656 Issue Pages 650-665  
  Keywords Session-based recommendations; Deep metric learning; Learning to rank  
  Abstract Session-based recommenders, used for making predictions out of users’ uninterrupted sequences of actions, are attractive for many applications. Here, for this task we propose using metric learning, where a common embedding space for sessions and items is created, and distance measures dissimilarity between the provided sequence of users’ events and the next action. We discuss and compare metric learning approaches to commonly used learning-to-rank methods, where some synergies exist. We propose a simple architecture for problem analysis and demonstrate that neither extensively big nor deep architectures are necessary in order to outperform existing methods. The experimental results against strong baselines on four datasets are provided with an ablation study.  
  Address Virtual; March 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor (up)  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ECIR  
  Notes LAMP; 600.120 Approved no  
  Call Number Admin @ si @ TZZ2021 Serial 3586  
Permanent link to this record
 

 
Author Zhengying Liu; Adrien Pavao; Zhen Xu; Sergio Escalera; Fabio Ferreira; Isabelle Guyon; Sirui Hong; Frank Hutter; Rongrong Ji; Julio C. S. Jacques Junior; Ge Li; Marius Lindauer; Zhipeng Luo; Meysam Madadi; Thomas Nierhoff; Kangning Niu; Chunguang Pan; Danny Stoll; Sebastien Treguer; Jin Wang; Peng Wang; Chenglin Wu; Youcheng Xiong; Arber Zela; Yang Zhang edit  url
doi  openurl
  Title Winning Solutions and Post-Challenge Analyses of the ChaLearn AutoDL Challenge 2019 Type Journal Article
  Year 2021 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume 43 Issue 9 Pages 3108 - 3125  
  Keywords  
  Abstract This paper reports the results and post-challenge analyses of ChaLearn's AutoDL challenge series, which helped sorting out a profusion of AutoML solutions for Deep Learning (DL) that had been introduced in a variety of settings, but lacked fair comparisons. All input data modalities (time series, images, videos, text, tabular) were formatted as tensors and all tasks were multi-label classification problems. Code submissions were executed on hidden tasks, with limited time and computational resources, pushing solutions that get results quickly. In this setting, DL methods dominated, though popular Neural Architecture Search (NAS) was impractical. Solutions relied on fine-tuned pre-trained networks, with architectures matching data modality. Post-challenge tests did not reveal improvements beyond the imposed time limit. While no component is particularly original or novel, a high level modular organization emerged featuring a “meta-learner”, “data ingestor”, “model selector”, “model/learner”, and “evaluator”. This modularity enabled ablation studies, which revealed the importance of (off-platform) meta-learning, ensembling, and efficient data management. Experiments on heterogeneous module combinations further confirm the (local) optimality of the winning solutions. Our challenge legacy includes an ever-lasting benchmark (http://autodl.chalearn.org), the open-sourced code of the winners, and a free “AutoDL self-service.”  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor (up)  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; no proj Approved no  
  Call Number Admin @ si @ LPX2021 Serial 3587  
Permanent link to this record
 

 
Author Albin Soutif; Marc Masana; Joost Van de Weijer; Bartlomiej Twardowski edit   pdf
openurl 
  Title On the importance of cross-task features for class-incremental learning Type Conference Article
  Year 2021 Publication Theory and Foundation of continual learning workshop of ICML Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract In class-incremental learning, an agent with limited resources needs to learn a sequence of classification tasks, forming an ever growing classification problem, with the constraint of not being able to access data from previous tasks. The main difference with task-incremental learning, where a task-ID is available at inference time, is that the learner also needs to perform crosstask discrimination, i.e. distinguish between classes that have not been seen together. Approaches to tackle this problem are numerous and mostly make use of an external memory (buffer) of non-negligible size. In this paper, we ablate the learning of crosstask features and study its influence on the performance of basic replay strategies used for class-IL. We also define a new forgetting measure for class-incremental learning, and see that forgetting is not the principal cause of low performance. Our experimental results show that future algorithms for class-incremental learning should not only prevent forgetting, but also aim to improve the quality of the cross-task features. This is especially important when the number of classes per task is small.  
  Address Virtual; July 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor (up)  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICMLW  
  Notes LAMP Approved no  
  Call Number Admin @ si @ SMW2021 Serial 3588  
Permanent link to this record
 

 
Author Xim Cerda-Company; Olivier Penacchio; Xavier Otazu edit   pdf
url  openurl
  Title Chromatic Induction in Migraine Type Journal
  Year 2021 Publication VISION Abbreviated Journal  
  Volume 5 Issue 3 Pages 37  
  Keywords migraine; vision; colour; colour perception; chromatic induction; psychophysics  
  Abstract The human visual system is not a colorimeter. The perceived colour of a region does not only depend on its colour spectrum, but also on the colour spectra and geometric arrangement of neighbouring regions, a phenomenon called chromatic induction. Chromatic induction is thought to be driven by lateral interactions: the activity of a central neuron is modified by stimuli outside its classical receptive field through excitatory–inhibitory mechanisms. As there is growing evidence of an excitation/inhibition imbalance in migraine, we compared chromatic induction in migraine and control groups. As hypothesised, we found a difference in the strength of induction between the two groups, with stronger induction effects in migraine. On the other hand, given the increased prevalence of visual phenomena in migraine with aura, we also hypothesised that the difference between migraine and control would be more important in migraine with aura than in migraine without aura. Our experiments did not support this hypothesis. Taken together, our results suggest a link between excitation/inhibition imbalance and increased induction effects.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor (up)  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes NEUROBIT; no proj Approved no  
  Call Number Admin @ si @ CPO2021 Serial 3589  
Permanent link to this record
 

 
Author Guillermo Torres; Debora Gil edit  openurl
  Title A multi-shape loss function with adaptive class balancing for the segmentation of lung structures Type Journal Article
  Year 2020 Publication International Journal of Computer Assisted Radiology and Surgery Abbreviated Journal IJCAR  
  Volume 15 Issue 1 Pages S154-55  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor (up)  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM Approved no  
  Call Number Admin @ si @ ToG2020 Serial 3590  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: