|
Antonio Clavelli, Dimosthenis Karatzas, Josep Llados, Mario Ferraro, & Giuseppe Boccignone. (2014). Modelling task-dependent eye guidance to objects in pictures. CoCom - Cognitive Computation, 6(3), 558–584.
Abstract: 5Y Impact Factor: 1.14 / 3rd (Computer Science, Artificial Intelligence)
We introduce a model of attentional eye guidance based on the rationale that the deployment of gaze is to be considered in the context of a general action-perception loop relying on two strictly intertwined processes: sensory processing, depending on current gaze position, identifies sources of information that are most valuable under the given task; motor processing links such information with the oculomotor act by sampling the next gaze position and thus performing the gaze shift. In such a framework, the choice of where to look next is task-dependent and oriented to classes of objects embedded within pictures of complex scenes. The dependence on task is taken into account by exploiting the value and the payoff of gazing at certain image patches or proto-objects that provide a sparse representation of the scene objects. The different levels of the action-perception loop are represented in probabilistic form and eventually give rise to a stochastic process that generates the gaze sequence. This way the model also accounts for statistical properties of gaze shifts such as individual scan path variability. Results of the simulations are compared either with experimental data derived from publicly available datasets and from our own experiments.
Keywords: Visual attention; Gaze guidance; Value; Payoff; Stochastic fixation prediction
|
|
|
Fernando Vilariño, Stephan Ameling, Gerard Lacey, Stephen Patchett, & Hugh Mulcahy. (2009). Eye Tracking Search Patterns in Expert and Trainee Colonoscopists: A Novel Method of Assessing Endoscopic Competency? GI - Gastrointestinal Endoscopy, 69(5), 370.
|
|
|
Rozenn Dhayot, Fernando Vilariño, & Gerard Lacey. (2008). Improving the Quality of Color Colonoscopy Videos. EURASIP JIVP - EURASIP Journal on Image and Video Processing, 139429(1), 1–9.
|
|
|
Mirko Arnold, Anarta Ghosh, Stephen Ameling, & G Lacey. (2010). Automatic segmentation and inpainting of specular highlights for endoscopic imaging. EURASIP JIVP - EURASIP Journal on Image and Video Processing, 2010(9).
|
|
|
Mirko Arnold, Anarta Ghosh, Gerard Lacey, Stephen Patchett, & Hugh Mulcahy. (2009). Indistinct frame detection in colonoscopy videos. In Machine Vision and Image Processing Conference (pp. 47–52).
|
|
|
Mirko Arnold, Stephan Ameling, Anarta Ghosh, & Gerard Lacey. (2011). Quality Improvement of Endoscopy Videos. In Proceedings of the 8th IASTED International Conference on Biomedical Engineering (Vol. 723).
|
|
|
Mirko Arnold, Anarta Ghosh, Glen Doherty, Hugh Mulcahy, Stephen Patchett, & Gerard Lacey. (2013). Towards Automatic Direct Observation of Procedure and Skill (DOPS) in Colonoscopy. In Proceedings of the International Conference on Computer Vision Theory and Applications (pp. 48–53).
|
|
|
Stefan Ameling, Stephan Wirth, Dietrich Paulus, Gerard Lacey, & Fernando Vilariño. (2009). Texture-based Polyp Detection in Colonoscopy. In Proc. BILDVERARBEITUNG FÜR DIE MEDIZIN.
|
|
|
Christophe Rigaud, Dimosthenis Karatzas, Jean-Christophe Burie, & Jean-Marc Ogier. (2013). Speech balloon contour classification in comics. In 10th IAPR International Workshop on Graphics Recognition.
Abstract: Comic books digitization combined with subsequent comic book understanding create a variety of new applications, including mobile reading and data mining. Document understanding in this domain is challenging as comics are semi-structured documents, combining semantically important graphical and textual parts. In this work we detail a novel approach for classifying speech balloon in scanned comics book pages based on their contour time series.
|
|
|
Fernando Vilariño, & Gerard Lacey. (2009). QUALITY ASSESSMENT IN COLONOSCOPY New challenges through computer vision-based systems. In in Proc. 3rd International Conference on Biomedical Electronics and Devices.
|
|
|
Fernando Vilariño, Gerard Lacey, Jiang Zhou, Hugh Mulcahy, & Stephen Patchett. (2007). Automatic Labeling of Colonoscopy Video for Cancer Detection. In In Proc. berian Conference, IbPRIA (pp. 290–297).
|
|
|
Patricia Marquez, Debora Gil, R.Mester, & Aura Hernandez-Sabate. (2014). Local Analysis of Confidence Measures for Optical Flow Quality Evaluation. In 9th International Conference on Computer Vision Theory and Applications (Vol. 3, pp. 450–457).
Abstract: Optical Flow (OF) techniques facing the complexity of real sequences have been developed in the last years. Even using the most appropriate technique for our specific problem, at some points the output flow might fail to achieve the minimum error required for the system. Confidence measures computed from either input data or OF output should discard those points where OF is not accurate enough for its further use. It follows that evaluating the capabilities of a confidence measure for bounding OF error is as important as the definition
itself. In this paper we analyze different confidence measures and point out their advantages and limitations for their use in real world settings. We also explore the agreement with current tools for their evaluation of confidence measures performance.
Keywords: Optical Flow; Confidence Measure; Performance Evaluation.
|
|
|
Jiaolong Xu, David Vazquez, Antonio Lopez, Javier Marin, & Daniel Ponsa. (2014). Learning a Part-based Pedestrian Detector in Virtual World. TITS - IEEE Transactions on Intelligent Transportation Systems, 15(5), 2121–2131.
Abstract: Detecting pedestrians with on-board vision systems is of paramount interest for assisting drivers to prevent vehicle-to-pedestrian accidents. The core of a pedestrian detector is its classification module, which aims at deciding if a given image window contains a pedestrian. Given the difficulty of this task, many classifiers have been proposed during the last fifteen years. Among them, the so-called (deformable) part-based classifiers including multi-view modeling are usually top ranked in accuracy. Training such classifiers is not trivial since a proper aspect clustering and spatial part alignment of the pedestrian training samples are crucial for obtaining an accurate classifier. In this paper, first we perform automatic aspect clustering and part alignment by using virtual-world pedestrians, i.e., human annotations are not required. Second, we use a mixture-of-parts approach that allows part sharing among different aspects. Third, these proposals are integrated in a learning framework which also allows to incorporate real-world training data to perform domain adaptation between virtual- and real-world cameras. Overall, the obtained results on four popular on-board datasets show that our proposal clearly outperforms the state-of-the-art deformable part-based detector known as latent SVM.
Keywords: Domain Adaptation; Pedestrian Detection; Virtual Worlds
|
|
|
Jiaolong Xu, Sebastian Ramos, David Vazquez, & Antonio Lopez. (2014). Cost-sensitive Structured SVM for Multi-category Domain Adaptation. In 22nd International Conference on Pattern Recognition (pp. 3886–3891). IEEE.
Abstract: Domain adaptation addresses the problem of accuracy drop that a classifier may suffer when the training data (source domain) and the testing data (target domain) are drawn from different distributions. In this work, we focus on domain adaptation for structured SVM (SSVM). We propose a cost-sensitive domain adaptation method for SSVM, namely COSS-SSVM. In particular, during the re-training of an adapted classifier based on target and source data, the idea that we explore consists in introducing a non-zero cost even for correctly classified source domain samples. Eventually, we aim to learn a more targetoriented classifier by not rewarding (zero loss) properly classified source-domain training samples. We assess the effectiveness of COSS-SSVM on multi-category object recognition.
Keywords: Domain Adaptation; Pedestrian Detection
|
|
|
Onur Ferhat, Fernando Vilariño, & F. Javier Sanchez. (2014). A cheap portable eye-tracker solution for common setups. JEMR - Journal of Eye Movement Research, 7(3), 1–10.
Abstract: We analyze the feasibility of a cheap eye-tracker where the hardware consists of a single webcam and a Raspberry Pi device. Our aim is to discover the limits of such a system and to see whether it provides an acceptable performance. We base our work on the open source Opengazer (Zielinski, 2013) and we propose several improvements to create a robust, real-time system which can work on a computer with 30Hz sampling rate. After assessing the accuracy of our eye-tracker in elaborated experiments involving 12 subjects under 4 different system setups, we install it on a Raspberry Pi to create a portable stand-alone eye-tracker which achieves 1.42° horizontal accuracy with 3Hz refresh rate for a building cost of 70 Euros.
|
|