|   | 
Details
   web
Records
Author Simon Jégou; Michal Drozdzal; David Vazquez; Adriana Romero; Yoshua Bengio
Title The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation Type Conference Article
Year 2017 Publication IEEE Conference on Computer Vision and Pattern Recognition Workshops Abbreviated Journal
Volume Issue Pages
Keywords Semantic Segmentation
Abstract State-of-the-art approaches for semantic image segmentation are built on Convolutional Neural Networks (CNNs). The typical segmentation architecture is composed of (a) a downsampling path responsible for extracting coarse semantic features, followed by (b) an upsampling path trained to recover the input image resolution at the output of the model and, optionally, (c) a post-processing module (e.g. Conditional Random Fields) to refine the model predictions.

Recently, a new CNN architecture, Densely Connected Convolutional Networks (DenseNets), has shown excellent results on image classification tasks. The idea of DenseNets is based on the observation that if each layer is directly connected to every other layer in a feed-forward fashion then the network will be more accurate and easier to train.

In this paper, we extend DenseNets to deal with the problem of semantic segmentation. We achieve state-of-the-art results on urban scene benchmark datasets such as CamVid and Gatech, without any further post-processing module nor pretraining. Moreover, due to smart construction of the model, our approach has much less parameters than currently published best entries for these datasets.
Address Honolulu; USA; July 2017
Corporate Author Thesis
Publisher Place of Publication Editor (up)
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPRW
Notes MILAB; ADAS; 600.076; 600.085; 601.281 Approved no
Call Number ADAS @ adas @ JDV2016 Serial 2866
Permanent link to this record
 

 
Author Pau Riba; Josep Llados; Alicia Fornes; Anjan Dutta
Title Large-scale graph indexing using binary embeddings of node contexts for information spotting in document image databases Type Journal Article
Year 2017 Publication Pattern Recognition Letters Abbreviated Journal PRL
Volume 87 Issue Pages 203-211
Keywords
Abstract Graph-based representations are experiencing a growing usage in visual recognition and retrieval due to their representational power in front of classical appearance-based representations. However, retrieving a query graph from a large dataset of graphs implies a high computational complexity. The most important property for a large-scale retrieval is the search time complexity to be sub-linear in the number of database examples. With this aim, in this paper we propose a graph indexation formalism applied to visual retrieval. A binary embedding is defined as hashing keys for graph nodes. Given a database of labeled graphs, graph nodes are complemented with vectors of attributes representing their local context. Then, each attribute vector is converted to a binary code applying a binary-valued hash function. Therefore, graph retrieval is formulated in terms of finding target graphs in the database whose nodes have a small Hamming distance from the query nodes, easily computed with bitwise logical operators. As an application example, we validate the performance of the proposed methods in different real scenarios such as handwritten word spotting in images of historical documents or symbol spotting in architectural floor plans.
Address
Corporate Author Thesis
Publisher Place of Publication Editor (up)
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes DAG; 600.097; 602.006; 603.053; 600.121 Approved no
Call Number RLF2017b Serial 2873
Permanent link to this record
 

 
Author Daniel Hernandez; Antonio Espinosa; David Vazquez; Antonio Lopez; Juan Carlos Moure
Title Embedded Real-time Stixel Computation Type Conference Article
Year 2017 Publication GPU Technology Conference Abbreviated Journal
Volume Issue Pages
Keywords GPU; CUDA; Stixels; Autonomous Driving
Abstract
Address Silicon Valley; USA; May 2017
Corporate Author Thesis
Publisher Place of Publication Editor (up)
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference GTC
Notes ADAS; 600.118 Approved no
Call Number ADAS @ adas @ HEV2017a Serial 2879
Permanent link to this record
 

 
Author David Vazquez; Jorge Bernal; F. Javier Sanchez; Gloria Fernandez Esparrach; Antonio Lopez; Adriana Romero; Michal Drozdzal; Aaron Courville
Title A Benchmark for Endoluminal Scene Segmentation of Colonoscopy Images Type Conference Article
Year 2017 Publication 31st International Congress and Exhibition on Computer Assisted Radiology and Surgery Abbreviated Journal
Volume Issue Pages
Keywords Deep Learning; Medical Imaging
Abstract Colorectal cancer (CRC) is the third cause of cancer death worldwide. Currently, the standard approach to reduce CRC-related mortality is to perform regular screening in search for polyps and colonoscopy is the screening tool of choice. The main limitations of this screening procedure are polyp miss-rate and inability to perform visual assessment of polyp malignancy. These drawbacks can be reduced by designing Decision Support Systems (DSS) aiming to help clinicians in the different stages of the procedure by providing endoluminal scene segmentation. Thus, in this paper, we introduce an extended benchmark of colonoscopy image, with the hope of establishing a new strong benchmark for colonoscopy image analysis research. We provide new baselines on this dataset by training standard fully convolutional networks (FCN) for semantic segmentation and significantly outperforming, without any further post-processing, prior results in endoluminal scene segmentation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor (up)
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CARS
Notes ADAS; MV; 600.075; 600.085; 600.076; 601.281; 600.118 Approved no
Call Number ADAS @ adas @ VBS2017a Serial 2880
Permanent link to this record
 

 
Author David Geronimo; David Vazquez; Arturo de la Escalera
Title Vision-Based Advanced Driver Assistance Systems Type Book Chapter
Year 2017 Publication Computer Vision in Vehicle Technology: Land, Sea, and Air Abbreviated Journal
Volume Issue Pages
Keywords ADAS; Autonomous Driving
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor (up)
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ADAS; 600.118 Approved no
Call Number ADAS @ adas @ GVE2017 Serial 2881
Permanent link to this record
 

 
Author Lluis Gomez; Dimosthenis Karatzas
Title TextProposals: a Text‐specific Selective Search Algorithm for Word Spotting in the Wild Type Journal Article
Year 2017 Publication Pattern Recognition Abbreviated Journal PR
Volume 70 Issue Pages 60-74
Keywords
Abstract Motivated by the success of powerful while expensive techniques to recognize words in a holistic way (Goel et al., 2013; Almazán et al., 2014; Jaderberg et al., 2016) object proposals techniques emerge as an alternative to the traditional text detectors. In this paper we introduce a novel object proposals method that is specifically designed for text. We rely on a similarity based region grouping algorithm that generates a hierarchy of word hypotheses. Over the nodes of this hierarchy it is possible to apply a holistic word recognition method in an efficient way.

Our experiments demonstrate that the presented method is superior in its ability of producing good quality word proposals when compared with class-independent algorithms. We show impressive recall rates with a few thousand proposals in different standard benchmarks, including focused or incidental text datasets, and multi-language scenarios. Moreover, the combination of our object proposals with existing whole-word recognizers (Almazán et al., 2014; Jaderberg et al., 2016) shows competitive performance in end-to-end word spotting, and, in some benchmarks, outperforms previously published results. Concretely, in the challenging ICDAR2015 Incidental Text dataset, we overcome in more than 10% F-score the best-performing method in the last ICDAR Robust Reading Competition (Karatzas, 2015). Source code of the complete end-to-end system is available at https://github.com/lluisgomez/TextProposals.
Address
Corporate Author Thesis
Publisher Place of Publication Editor (up)
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes DAG; 600.084; 601.197; 600.121; 600.129 Approved no
Call Number Admin @ si @ GoK2017 Serial 2886
Permanent link to this record
 

 
Author Lluis Gomez; Anguelos Nicolaou; Dimosthenis Karatzas
Title Improving patch‐based scene text script identification with ensembles of conjoined networks Type Journal Article
Year 2017 Publication Pattern Recognition Abbreviated Journal PR
Volume 67 Issue Pages 85-96
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor (up)
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes DAG; 600.084; 600.121; 600.129 Approved no
Call Number Admin @ si @ GNK2017 Serial 2887
Permanent link to this record
 

 
Author Lluis Gomez; Y. Patel; Marçal Rusiñol; C.V. Jawahar; Dimosthenis Karatzas
Title Self‐supervised learning of visual features through embedding images into text topic spaces Type Conference Article
Year 2017 Publication 30th IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal
Volume Issue Pages
Keywords
Abstract End-to-end training from scratch of current deep architectures for new computer vision problems would require Imagenet-scale datasets, and this is not always possible. In this paper we present a method that is able to take advantage of freely available multi-modal content to train computer vision algorithms without human supervision. We put forward the idea of performing self-supervised learning of visual features by mining a large scale corpus of multi-modal (text and image) documents. We show that discriminative visual features can be learnt efficiently by training a CNN to predict the semantic context in which a particular image is more probable to appear as an illustration. For this we leverage the hidden semantic structures discovered in the text corpus with a well-known topic modeling technique. Our experiments demonstrate state of the art performance in image classification, object detection, and multi-modal retrieval compared to recent self-supervised or natural-supervised approaches.
Address Honolulu; Hawaii; July 2017
Corporate Author Thesis
Publisher Place of Publication Editor (up)
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference CVPR
Notes DAG; 600.084; 600.121 Approved no
Call Number Admin @ si @ GPR2017 Serial 2889
Permanent link to this record
 

 
Author Ivet Rafegas; Javier Vazquez; Robert Benavente; Maria Vanrell; Susana Alvarez
Title Enhancing spatio-chromatic representation with more-than-three color coding for image description Type Journal Article
Year 2017 Publication Journal of the Optical Society of America A Abbreviated Journal JOSA A
Volume 34 Issue 5 Pages 827-837
Keywords
Abstract Extraction of spatio-chromatic features from color images is usually performed independently on each color channel. Usual 3D color spaces, such as RGB, present a high inter-channel correlation for natural images. This correlation can be reduced using color-opponent representations, but the spatial structure of regions with small color differences is not fully captured in two generic Red-Green and Blue-Yellow channels. To overcome these problems, we propose a new color coding that is adapted to the specific content of each image. Our proposal is based on two steps: (a) setting the number of channels to the number of distinctive colors we find in each image (avoiding the problem of channel correlation), and (b) building a channel representation that maximizes contrast differences within each color channel (avoiding the problem of low local contrast). We call this approach more-than-three color coding (MTT) to enhance the fact that the number of channels is adapted to the image content. The higher color complexity an image has, the more channels can be used to represent it. Here we select distinctive colors as the most predominant in the image, which we call color pivots, and we build the new color coding using these color pivots as a basis. To evaluate the proposed approach we measure its efficiency in an image categorization task. We show how a generic descriptor improves its performance at the description level when applied on the MTT coding.
Address
Corporate Author Thesis
Publisher Place of Publication Editor (up)
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes CIC; 600.087 Approved no
Call Number Admin @ si @ RVB2017 Serial 2892
Permanent link to this record
 

 
Author Victor Vaquero; German Ros; Francesc Moreno-Noguer; Antonio Lopez; Alberto Sanfeliu
Title Joint coarse-and-fine reasoning for deep optical flow Type Conference Article
Year 2017 Publication 24th International Conference on Image Processing Abbreviated Journal
Volume Issue Pages 2558-2562
Keywords
Abstract We propose a novel representation for dense pixel-wise estimation tasks using CNNs that boosts accuracy and reduces training time, by explicitly exploiting joint coarse-and-fine reasoning. The coarse reasoning is performed over a discrete classification space to obtain a general rough solution, while the fine details of the solution are obtained over a continuous regression space. In our approach both components are jointly estimated, which proved to be beneficial for improving estimation accuracy. Additionally, we propose a new network architecture, which combines coarse and fine components by treating the fine estimation as a refinement built on top of the coarse solution, and therefore adding details to the general prediction. We apply our approach to the challenging problem of optical flow estimation and empirically validate it against state-of-the-art CNN-based solutions trained from scratch and tested on large optical flow datasets.
Address Beijing; China; September 2017
Corporate Author Thesis
Publisher Place of Publication Editor (up)
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ICIP
Notes ADAS; 600.118 Approved no
Call Number Admin @ si @ VRM2017 Serial 2898
Permanent link to this record
 

 
Author Cristhian A. Aguilera-Carrasco; Angel Sappa; Cristhian Aguilera; Ricardo Toledo
Title Cross-Spectral Local Descriptors via Quadruplet Network Type Journal Article
Year 2017 Publication Sensors Abbreviated Journal SENS
Volume 17 Issue 4 Pages 873
Keywords
Abstract This paper presents a novel CNN-based architecture, referred to as Q-Net, to learn local feature descriptors that are useful for matching image patches from two different spectral bands. Given correctly matched and non-matching cross-spectral image pairs, a quadruplet network is trained to map input image patches to a common Euclidean space, regardless of the input spectral band. Our approach is inspired by the recent success of triplet networks in the visible spectrum, but adapted for cross-spectral scenarios, where, for each matching pair, there are always two possible non-matching patches: one for each spectrum. Experimental evaluations on a public cross-spectral VIS-NIR dataset shows that the proposed approach improves the state-of-the-art. Moreover, the proposed technique can also be used in mono-spectral settings, obtaining a similar performance to triplet network descriptors, but requiring less training data.
Address
Corporate Author Thesis
Publisher Place of Publication Editor (up)
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ADAS; 600.086; 600.118 Approved no
Call Number Admin @ si @ ASA2017 Serial 2914
Permanent link to this record
 

 
Author Patricia Suarez; Angel Sappa; Boris X. Vintimilla
Title Cross-Spectral Image Patch Similarity using Convolutional Neural Network Type Conference Article
Year 2017 Publication IEEE International Workshop of Electronics, Control, Measurement, Signals and their application to Mechatronics Abbreviated Journal
Volume Issue Pages
Keywords
Abstract The ability to compare image regions (patches) has been the basis of many approaches to core computer vision problems, including object, texture and scene categorization. Hence, developing representations for image patches have been of interest in several works. The current work focuses on learning similarity between cross-spectral image patches with a 2 channel convolutional neural network (CNN) model. The proposed approach is an adaptation of a previous work, trying to obtain similar results than the state of the art but with a lowcost hardware. Hence, obtained results are compared with both
classical approaches, showing improvements, and a state of the art CNN based approach.
Address San Sebastian; Spain; May 2017
Corporate Author Thesis
Publisher Place of Publication Editor (up)
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ECMSM
Notes ADAS; 600.086; 600.118 Approved no
Call Number Admin @ si @ SSV2017a Serial 2916
Permanent link to this record
 

 
Author Angel Valencia; Roger Idrovo; Angel Sappa; Douglas Plaza; Daniel Ochoa
Title A 3D Vision Based Approach for Optimal Grasp of Vacuum Grippers Type Conference Article
Year 2017 Publication IEEE International Workshop of Electronics, Control, Measurement, Signals and their application to Mechatronics Abbreviated Journal
Volume Issue Pages
Keywords
Abstract In general, robot grasping approaches are based on the usage of multi-finger grippers. However, when large size objects need to be manipulated vacuum grippers are preferred, instead of finger based grippers. This paper aims to estimate the best picking place for a two suction cups vacuum gripper,
when planar objects with an unknown size and geometry are considered. The approach is based on the estimation of geometric properties of object’s shape from a partial cloud of points (a single 3D view), in such a way that combine with considerations of a theoretical model to generate an optimal contact point
that minimizes the vacuum force needed to guarantee a grasp.
Experimental results in real scenarios are presented to show the validity of the proposed approach.
Address San Sebastian; Spain; May 2017
Corporate Author Thesis
Publisher Place of Publication Editor (up)
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference ECMSM
Notes ADAS; 600.086; 600.118 Approved no
Call Number Admin @ si @ VIS2017 Serial 2917
Permanent link to this record
 

 
Author Cristhian Aguilera; Xavier Soria; Angel Sappa; Ricardo Toledo
Title RGBN Multispectral Images: a Novel Color Restoration Approach Type Conference Article
Year 2017 Publication 15th International Conference on Practical Applications of Agents and Multi-Agent System Abbreviated Journal
Volume Issue Pages
Keywords Multispectral Imaging; Free Sensor Model; Neural Network
Abstract This paper describes a color restoration technique used to remove NIR information from single sensor cameras where color and near-infrared images are simultaneously acquired|referred to in the literature as RGBN images. The proposed approach is based on a neural network architecture that learns the NIR information contained in the RGBN images. The proposed approach is evaluated on real images obtained by using a pair of RGBN cameras. Additionally, qualitative comparisons with a nave color correction technique based on mean square
error minimization are provided.
Address Porto; Portugal; June 2017
Corporate Author Thesis
Publisher Place of Publication Editor (up)
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference PAAMS
Notes ADAS; MSIAU; 600.118; 600.122 Approved no
Call Number Admin @ si @ ASS2017 Serial 2918
Permanent link to this record
 

 
Author Patricia Suarez; Angel Sappa; Boris X. Vintimilla
Title Learning to Colorize Infrared Images Type Conference Article
Year 2017 Publication 15th International Conference on Practical Applications of Agents and Multi-Agent System Abbreviated Journal
Volume Issue Pages
Keywords CNN in multispectral imaging; Image colorization
Abstract This paper focuses on near infrared (NIR) image colorization by using a Generative Adversarial Network (GAN) architecture model. The proposed architecture consists of two stages. Firstly, it learns to colorize the given input, resulting in a RGB image. Then, in the second stage, a discriminative model is used to estimate the probability that the generated image came from the training dataset, rather than the image automatically generated. The proposed model starts the learning process from scratch, because our set of images is very di erent from the dataset used in existing pre-trained models, so transfer learning strategies cannot be used. Infrared image colorization is an important problem when human perception need to be considered, e.g, in remote sensing applications. Experimental results with a large set of real images are provided showing the validity of the proposed approach.
Address Porto; Portugal; June 2017
Corporate Author Thesis
Publisher Place of Publication Editor (up)
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference PAAMS
Notes ADAS; MSIAU; 600.086; 600.122; 600.118 Approved no
Call Number Admin @ si @ Serial 2919
Permanent link to this record