A. Martinez, S. Gonzalez, Jordi Vitria, & J. Lopez. (1997). NAT: a robot that recognizes offices. In Proceedings of CAEPIA–97. VII Conferencia de la Asociación Española para la Inteligencia Artificial. (pp. 327–336).
|
Bogdan Raducanu, & Jordi Vitria. (2007). Incremental Subspace Learning for Cognitive Visual Processes. In Advances in Brain, Vision and Artificial Intelligence, 2nd International Symposium (Vol. 4729, 214–223). LNCS.
|
Jaume Amores, N. Sebe, & Petia Radeva. (2007). Class-Specific Binaryy Correlograms for Object Recognition. In British Machine Vision Conference.
|
Marçal Rusiñol, Lluis Gomez, A. Landman, M. Silva Constenla, & Dimosthenis Karatzas. (2019). Automatic Structured Text Reading for License Plates and Utility Meters. In BMVC Workshop on Visual Artificial Intelligence and Entrepreneurship.
Abstract: Reading text in images has attracted interest from computer vision researchers for
many years. Our technology focuses on the extraction of structured text – such as serial
numbers, machine readings, product codes, etc. – so that it is able to center its attention just on the relevant textual elements. It is conceived to work in an end-to-end fashion, bypassing any explicit text segmentation stage. In this paper we present two different industrial use cases where we have applied our automatic structured text reading technology. In the first one, we demonstrate an outstanding performance when reading license plates compared to the current state of the art. In the second one, we present results on our solution for reading utility meters. The technology is commercialized by a recently created spin-off company, and both solutions are at different stages of integration with final clients.
|
German Ros, J. Guerrero, Angel Sappa, Daniel Ponsa, & Antonio Lopez. (2013). Fast and Robust l1-averaging-based Pose Estimation for Driving Scenarios. In 24th British Machine Vision Conference.
Abstract: Robust visual pose estimation is at the core of many computer vision applications, being fundamental for Visual SLAM and Visual Odometry problems. During the last decades, many approaches have been proposed to solve these problems, being RANSAC one of the most accepted and used. However, with the arrival of new challenges, such as large driving scenarios for autonomous vehicles, along with the improvements in the data gathering frameworks, new issues must be considered. One of these issues is the capability of a technique to deal with very large amounts of data while meeting the realtime
constraint. With this purpose in mind, we present a novel technique for the problem of robust camera-pose estimation that is more suitable for dealing with large amount of data, which additionally, helps improving the results. The method is based on a combination of a very fast coarse-evaluation function and a robust ℓ1-averaging procedure. Such scheme leads to high-quality results while taking considerably less time than RANSAC.
Experimental results on the challenging KITTI Vision Benchmark Suite are provided, showing the validity of the proposed approach.
Keywords: SLAM
|
Jon Almazan, Albert Gordo, Alicia Fornes, & Ernest Valveny. (2012). Efficient Exemplar Word Spotting. In 23rd British Machine Vision Conference (67.pp. 1–67.11).
Abstract: In this paper we propose an unsupervised segmentation-free method for word spotting in document images.
Documents are represented with a grid of HOG descriptors, and a sliding window approach is used to locate the document regions that are most similar to the query. We use the exemplar SVM framework to produce a better representation of the query in an unsupervised way. Finally, the document descriptors are precomputed and compressed with Product Quantization. This offers two advantages: first, a large number of documents can be kept in RAM memory at the same time. Second, the sliding window becomes significantly faster since distances between quantized HOG descriptors can be precomputed. Our results significantly outperform other segmentation-free methods in the literature, both in accuracy and in speed and memory usage.
|
Naila Murray, Luca Marchesotti, & Florent Perronnin. (2012). Learning to Rank Images using Semantic and Aesthetic Labels. In 23rd British Machine Vision Conference (110.pp. 1–110.10).
Abstract: Most works on image retrieval from text queries have addressed the problem of retrieving semantically relevant images. However, the ability to assess the aesthetic quality of an image is an increasingly important differentiating factor for search engines. In this work, given a semantic query, we are interested in retrieving images which are semantically relevant and score highly in terms of aesthetics/visual quality. We use large-margin classifiers and rankers to learn statistical models capable of ordering images based on the aesthetic and semantic information. In particular, we compare two families of approaches: while the first one attempts to learn a single ranker which takes into account both semantic and aesthetic information, the second one learns separate semantic and aesthetic models. We carry out a quantitative and qualitative evaluation on a recently-published large-scale dataset and we show that the second family of techniques significantly outperforms the first one.
|
Pedro Martins, Paulo Carvalho, & Carlo Gatta. (2012). Context Aware Keypoint Extraction for Robust Image Representation. In 23rd British Machine Vision Conference (100.pp. 1–100.12).
|
Adria Ruiz, Joost Van de Weijer, & Xavier Binefa. (2014). Regularized Multi-Concept MIL for weakly-supervised facial behavior categorization. In 25th British Machine Vision Conference.
Abstract: We address the problem of estimating high-level semantic labels for videos of recorded people by means of analysing their facial expressions. This problem, to which we refer as facial behavior categorization, is a weakly-supervised learning problem where we do not have access to frame-by-frame facial gesture annotations but only weak-labels at the video level are available. Therefore, the goal is to learn a set of discriminative expressions and how they determine the video weak-labels. Facial behavior categorization can be posed as a Multi-Instance-Learning (MIL) problem and we propose a novel MIL method called Regularized Multi-Concept MIL to solve it. In contrast to previous approaches applied in facial behavior analysis, RMC-MIL follows a Multi-Concept assumption which allows different facial expressions (concepts) to contribute differently to the video-label. Moreover, to handle with the high-dimensional nature of facial-descriptors, RMC-MIL uses a discriminative approach to model the concepts and structured sparsity regularization to discard non-informative features. RMC-MIL is posed as a convex-constrained optimization problem where all the parameters are jointly learned using the Projected-Quasi-Newton method. In our experiments, we use two public data-sets to show the advantages of the Regularized Multi-Concept approach and its improvement compared to existing MIL methods. RMC-MIL outperforms state-of-the-art results in the UNBC data-set for pain detection.
|
Jiaolong Xu, Sebastian Ramos, David Vazquez, & Antonio Lopez. (2014). Incremental Domain Adaptation of Deformable Part-based Models. In Tony Andrew and Pridmore M. and F. Valstar (Ed.), 25th British Machine Vision Conference. BMVA Press.
Abstract: Nowadays, classifiers play a core role in many computer vision tasks. The underlying assumption for learning classifiers is that the training set and the deployment environment (testing) follow the same probability distribution regarding the features used by the classifiers. However, in practice, there are different reasons that can break this constancy assumption. Accordingly, reusing existing classifiers by adapting them from the previous training environment (source domain) to the new testing one (target domain)
is an approach with increasing acceptance in the computer vision community. In this paper we focus on the domain adaptation of deformable part-based models (DPMs) for object detection. In particular, we focus on a relatively unexplored scenario, i.e. incremental domain adaptation for object detection assuming weak-labeling. Therefore, our algorithm is ready to improve existing source-oriented DPM-based detectors as soon as a little amount of labeled target-domain training data is available, and keeps improving as more of such data arrives in a continuous fashion. For achieving this, we follow a multiple
instance learning (MIL) paradigm that operates in an incremental per-image basis. As proof of concept, we address the challenging scenario of adapting a DPM-based pedestrian detector trained with synthetic pedestrians to operate in real-world scenarios. The obtained results show that our incremental adaptive models obtain equally good accuracy results as the batch learned models, while being more flexible for handling continuously arriving target-domain data.
Keywords: Pedestrian Detection; Part-based models; Domain Adaptation
|
Antonio Hernandez, Stan Sclaroff, & Sergio Escalera. (2014). Contextual rescoring for Human Pose Estimation. In 25th British Machine Vision Conference.
Abstract: A contextual rescoring method is proposed for improving the detection of body joints of a pictorial structure model for human pose estimation. A set of mid-level parts is incorporated in the model, and their detections are used to extract spatial and score-related features relative to other body joint hypotheses. A technique is proposed for the automatic discovery of a compact subset of poselets that covers a set of validation images
while maximizing precision. A rescoring mechanism is defined as a set-based boosting classifier that computes a new score for body joint detections, given its relationship to detections of other body joints and mid-level parts in the image. This new score complements the unary potential of a discriminatively trained pictorial structure model. Experiments on two benchmarks show performance improvements when considering the proposed mid-level image representation and rescoring approach in comparison with other pictorial structure-based approaches.
|
Victor Ponce, Hugo Jair Escalante, Sergio Escalera, & Xavier Baro. (2015). Gesture and Action Recognition by Evolved Dynamic Subgestures. In 26th British Machine Vision Conference (129.pp. 1–129.13).
Abstract: This paper introduces a framework for gesture and action recognition based on the evolution of temporal gesture primitives, or subgestures. Our work is inspired on the principle of producing genetic variations within a population of gesture subsequences, with the goal of obtaining a set of gesture units that enhance the generalization capability of standard gesture recognition approaches. In our context, gesture primitives are evolved over time using dynamic programming and generative models in order to recognize complex actions. In few generations, the proposed subgesture-based representation
of actions and gestures outperforms the state of the art results on the MSRDaily3D and MSRAction3D datasets.
|
Huamin Ren, Weifeng Liu, Soren Ingvor Olsen, Sergio Escalera, & Thomas B. Moeslund. (2015). Unsupervised Behavior-Specific Dictionary Learning for Abnormal Event Detection. In 26th British Machine Vision Conference.
|
Daniel Hernandez, Lukas Schneider, Antonio Espinosa, David Vazquez, Antonio Lopez, Uwe Franke, et al. (2017). Slanted Stixels: Representing San Francisco's Steepest Streets. In 28th British Machine Vision Conference.
Abstract: In this work we present a novel compact scene representation based on Stixels that infers geometric and semantic information. Our approach overcomes the previous rather restrictive geometric assumptions for Stixels by introducing a novel depth model to account for non-flat roads and slanted objects. Both semantic and depth cues are used jointly to infer the scene representation in a sound global energy minimization formulation. Furthermore, a novel approximation scheme is introduced that uses an extremely efficient over-segmentation. In doing so, the computational complexity of the Stixel inference algorithm is reduced significantly, achieving real-time computation capabilities with only a slight drop in accuracy. We evaluate the proposed approach in terms of semantic and geometric accuracy as well as run-time on four publicly available benchmark datasets. Our approach maintains accuracy on flat road scene datasets while improving substantially on a novel non-flat road dataset.
|
Vassileios Balntas, Edgar Riba, Daniel Ponsa, & Krystian Mikolajczyk. (2016). Learning local feature descriptors with triplets and shallow convolutional neural networks. In 27th British Machine Vision Conference.
Abstract: It has recently been demonstrated that local feature descriptors based on convolutional neural networks (CNN) can significantly improve the matching performance. Previous work on learning such descriptors has focused on exploiting pairs of positive and negative patches to learn discriminative CNN representations. In this work, we propose to utilize triplets of training samples, together with in-triplet mining of hard negatives.
We show that our method achieves state of the art results, without the computational overhead typically associated with mining of negatives and with lower complexity of the network architecture. We compare our approach to recently introduced convolutional local feature descriptors, and demonstrate the advantages of the proposed methods in terms of performance and speed. We also examine different loss functions associated with triplets.
|