toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Wenwen Yu; Chengquan Zhang; Haoyu Cao; Wei Hua; Bohan Li; Huang Chen; Mingyu Liu; Mingrui Chen; Jianfeng Kuang; Mengjun Cheng; Yuning Du; Shikun Feng; Xiaoguang Hu; Pengyuan Lyu; Kun Yao; Yuechen Yu; Yuliang Liu; Wanxiang Che; Errui Ding; Cheng-Lin Liu; Jiebo Luo; Shuicheng Yan; Min Zhang; Dimosthenis Karatzas; Xing Sun; Jingdong Wang; Xiang Bai edit  url
openurl 
  Title ICDAR 2023 Competition on Structured Text Extraction from Visually-Rich Document Images Type Conference Article
  Year 2023 Publication 17th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume 14188 Issue Pages 536–552  
  Keywords  
  Abstract Structured text extraction is one of the most valuable and challenging application directions in the field of Document AI. However, the scenarios of past benchmarks are limited, and the corresponding evaluation protocols usually focus on the submodules of the structured text extraction scheme. In order to eliminate these problems, we organized the ICDAR 2023 competition on Structured text extraction from Visually-Rich Document images (SVRD). We set up two tracks for SVRD including Track 1: HUST-CELL and Track 2: Baidu-FEST, where HUST-CELL aims to evaluate the end-to-end performance of Complex Entity Linking and Labeling, and Baidu-FEST focuses on evaluating the performance and generalization of Zero-shot/Few-shot Structured Text extraction from an end-to-end perspective. Compared to the current document benchmarks, our two tracks of competition benchmark enriches the scenarios greatly and contains more than 50 types of visually-rich document images (mainly from the actual enterprise applications). The competition opened on 30th December, 2022 and closed on 24th March, 2023. There are 35 participants and 91 valid submissions received for Track 1, and 15 participants and 26 valid submissions received for Track 2. In this report we will presents the motivation, competition datasets, task definition, evaluation protocol, and submission summaries. According to the performance of the submissions, we believe there is still a large gap on the expected information extraction performance for complex and zero-shot scenarios. It is hoped that this competition will attract many researchers in the field of CV and NLP, and bring some new thoughts to the field of Document AI.  
  Address San Jose; CA; USA; August 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (down) ICDAR  
  Notes DAG Approved no  
  Call Number Admin @ si @ YZC2023 Serial 3896  
Permanent link to this record
 

 
Author Wenwen Yu; Mingyu Liu; Mingrui Chen; Ning Lu; Yinlong We; Yuliang Liu; Dimosthenis Karatzas; Xiang Bai edit  url
openurl 
  Title ICDAR 2023 Competition on Reading the Seal Title Type Conference Article
  Year 2023 Publication 17th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume 14188 Issue Pages 522–535  
  Keywords  
  Abstract Reading seal title text is a challenging task due to the variable shapes of seals, curved text, background noise, and overlapped text. However, this important element is commonly found in official and financial scenarios, and has not received the attention it deserves in the field of OCR technology. To promote research in this area, we organized ICDAR 2023 competition on reading the seal title (ReST), which included two tasks: seal title text detection (Task 1) and end-to-end seal title recognition (Task 2). We constructed a dataset of 10,000 real seal data, covering the most common classes of seals, and labeled all seal title texts with text polygons and text contents. The competition opened on 30th December, 2022 and closed on 20th March, 2023. The competition attracted 53 participants and received 135 submissions from academia and industry, including 28 participants and 72 submissions for Task 1, and 25 participants and 63 submissions for Task 2, which demonstrated significant interest in this challenging task. In this report, we present an overview of the competition, including the organization, challenges, and results. We describe the dataset and tasks, and summarize the submissions and evaluation results. The results show that significant progress has been made in the field of seal title text reading, and we hope that this competition will inspire further research and development in this important area of OCR technology.  
  Address San Jose; CA; USA; August 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (down) ICDAR  
  Notes DAG Approved no  
  Call Number Admin @ si @ YLC2023 Serial 3897  
Permanent link to this record
 

 
Author Weijia Wu; Yuzhong Zhao; Zhuang Li; Jiahong Li; Mike Zheng Shou; Umapada Pal; Dimosthenis Karatzas; Xiang Bai edit   pdf
url  openurl
  Title ICDAR 2023 Competition on Video Text Reading for Dense and Small Text Type Conference Article
  Year 2023 Publication 17th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume 14188 Issue Pages 405–419  
  Keywords Video Text Spotting; Small Text; Text Tracking; Dense Text  
  Abstract Recently, video text detection, tracking and recognition in natural scenes are becoming very popular in the computer vision community. However, most existing algorithms and benchmarks focus on common text cases (e.g., normal size, density) and single scenario, while ignore extreme video texts challenges, i.e., dense and small text in various scenarios. In this competition report, we establish a video text reading benchmark, named DSText, which focuses on dense and small text reading challenge in the video with various scenarios. Compared with the previous datasets, the proposed dataset mainly include three new challenges: 1) Dense video texts, new challenge for video text spotter. 2) High-proportioned small texts. 3) Various new scenarios, e.g., ‘Game’, ‘Sports’, etc. The proposed DSText includes 100 video clips from 12 open scenarios, supporting two tasks (i.e., video text tracking (Task 1) and end-to-end video text spotting (Task2)). During the competition period (opened on 15th February, 2023 and closed on 20th March, 2023), a total of 24 teams participated in the three proposed tasks with around 30 valid submissions, respectively. In this article, we describe detailed statistical information of the dataset, tasks, evaluation protocols and the results summaries of the ICDAR 2023 on DSText competition. Moreover, we hope the benchmark will promise the video text research in the community.  
  Address San Jose; CA; USA; August 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (down) ICDAR  
  Notes DAG Approved no  
  Call Number Admin @ si @ WZL2023 Serial 3898  
Permanent link to this record
 

 
Author Stepan Simsa; Milan Sulc; Michal Uricar; Yash Patel; Ahmed Hamdi; Matej Kocian; Matyas Skalicky; Jiri Matas; Antoine Doucet; Mickael Coustaty; Dimosthenis Karatzas edit   pdf
url  openurl
  Title DocILE Benchmark for Document Information Localization and Extraction Type Conference Article
  Year 2023 Publication 17th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume 14188 Issue Pages 147–166  
  Keywords Document AI; Information Extraction; Line Item Recognition; Business Documents; Intelligent Document Processing  
  Abstract This paper introduces the DocILE benchmark with the largest dataset of business documents for the tasks of Key Information Localization and Extraction and Line Item Recognition. It contains 6.7k annotated business documents, 100k synthetically generated documents, and nearly 1M unlabeled documents for unsupervised pre-training. The dataset has been built with knowledge of domain- and task-specific aspects, resulting in the following key features: (i) annotations in 55 classes, which surpasses the granularity of previously published key information extraction datasets by a large margin; (ii) Line Item Recognition represents a highly practical information extraction task, where key information has to be assigned to items in a table; (iii) documents come from numerous layouts and the test set includes zero- and few-shot cases as well as layouts commonly seen in the training set. The benchmark comes with several baselines, including RoBERTa, LayoutLMv3 and DETR-based Table Transformer; applied to both tasks of the DocILE benchmark, with results shared in this paper, offering a quick starting point for future work. The dataset, baselines and supplementary material are available at https://github.com/rossumai/docile.  
  Address San Jose; CA; USA; August 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (down) ICDAR  
  Notes DAG Approved no  
  Call Number Admin @ si @ SSU2023 Serial 3903  
Permanent link to this record
 

 
Author George Tom; Minesh Mathew; Sergi Garcia Bordils; Dimosthenis Karatzas; CV Jawahar edit  url
openurl 
  Title ICDAR 2023 Competition on RoadText Video Text Detection, Tracking and Recognition Type Conference Article
  Year 2023 Publication 17th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume 14188 Issue Pages 577–586  
  Keywords  
  Abstract In this report, we present the final results of the ICDAR 2023 Competition on RoadText Video Text Detection, Tracking and Recognition. The RoadText challenge is based on the RoadText-1K dataset and aims to assess and enhance current methods for scene text detection, recognition, and tracking in videos. The RoadText-1K dataset contains 1000 dash cam videos with annotations for text bounding boxes and transcriptions in every frame. The competition features an end-to-end task, requiring systems to accurately detect, track, and recognize text in dash cam videos. The paper presents a comprehensive review of the submitted methods along with a detailed analysis of the results obtained by the methods. The analysis provides valuable insights into the current capabilities and limitations of video text detection, tracking, and recognition systems for dashcam videos.  
  Address San Jose; CA; USA; August 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (down) ICDAR  
  Notes DAG Approved no  
  Call Number Admin @ si @ TMG2023 Serial 3905  
Permanent link to this record
 

 
Author George Tom; Minesh Mathew; Sergi Garcia Bordils; Dimosthenis Karatzas; CV Jawahar edit  url
openurl 
  Title Reading Between the Lanes: Text VideoQA on the Road Type Conference Article
  Year 2023 Publication 17th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume 14192 Issue Pages 137–154  
  Keywords VideoQA; scene text; driving videos  
  Abstract Text and signs around roads provide crucial information for drivers, vital for safe navigation and situational awareness. Scene text recognition in motion is a challenging problem, while textual cues typically appear for a short time span, and early detection at a distance is necessary. Systems that exploit such information to assist the driver should not only extract and incorporate visual and textual cues from the video stream but also reason over time. To address this issue, we introduce RoadTextVQA, a new dataset for the task of video question answering (VideoQA) in the context of driver assistance. RoadTextVQA consists of 3, 222 driving videos collected from multiple countries, annotated with 10, 500 questions, all based on text or road signs present in the driving videos. We assess the performance of state-of-the-art video question answering models on our RoadTextVQA dataset, highlighting the significant potential for improvement in this domain and the usefulness of the dataset in advancing research on in-vehicle support systems and text-aware multimodal question answering. The dataset is available at http://cvit.iiit.ac.in/research/projects/cvit-projects/roadtextvqa.  
  Address San Jose; CA; USA; August 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (down) ICDAR  
  Notes DAG Approved no  
  Call Number Admin @ si @ TMG2023 Serial 3906  
Permanent link to this record
 

 
Author Sergi Garcia Bordils; Dimosthenis Karatzas; Marçal Rusiñol edit  url
openurl 
  Title Accelerating Transformer-Based Scene Text Detection and Recognition via Token Pruning Type Conference Article
  Year 2023 Publication 17th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume 14192 Issue Pages 106-121  
  Keywords Scene Text Detection; Scene Text Recognition; Transformer Acceleration  
  Abstract Scene text detection and recognition is a crucial task in computer vision with numerous real-world applications. Transformer-based approaches are behind all current state-of-the-art models and have achieved excellent performance. However, the computational requirements of the transformer architecture makes training these methods slow and resource heavy. In this paper, we introduce a new token pruning strategy that significantly decreases training and inference times without sacrificing performance, striking a balance between accuracy and speed. We have applied this pruning technique to our own end-to-end transformer-based scene text understanding architecture. Our method uses a separate detection branch to guide the pruning of uninformative image features, which significantly reduces the number of tokens at the input of the transformer. Experimental results show how our network is able to obtain competitive results on multiple public benchmarks while running at significantly higher speeds.  
  Address San Jose; CA; USA; August 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (down) ICDAR  
  Notes DAG Approved no  
  Call Number Admin @ si @ GKR2023a Serial 3907  
Permanent link to this record
 

 
Author Adarsh Tiwari; Sanket Biswas; Josep Llados edit  url
openurl 
  Title Can Pre-trained Language Models Help in Understanding Handwritten Symbols? Type Conference Article
  Year 2023 Publication 17th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume 14193 Issue Pages 199–211  
  Keywords  
  Abstract The emergence of transformer models like BERT, GPT-2, GPT-3, RoBERTa, T5 for natural language understanding tasks has opened the floodgates towards solving a wide array of machine learning tasks in other modalities like images, audio, music, sketches and so on. These language models are domain-agnostic and as a result could be applied to 1-D sequences of any kind. However, the key challenge lies in bridging the modality gap so that they could generate strong features beneficial for out-of-domain tasks. This work focuses on leveraging the power of such pre-trained language models and discusses the challenges in predicting challenging handwritten symbols and alphabets.  
  Address San Jose; CA; USA; August 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (down) ICDAR  
  Notes DAG Approved no  
  Call Number Admin @ si @ TBL2023 Serial 3908  
Permanent link to this record
 

 
Author Subhajit Maity; Sanket Biswas; Siladittya Manna; Ayan Banerjee; Josep Llados; Saumik Bhattacharya; Umapada Pal edit   pdf
url  doi
openurl 
  Title SelfDocSeg: A Self-Supervised vision-based Approach towards Document Segmentation Type Conference Article
  Year 2023 Publication 17th International Conference on Doccument Analysis and Recognition Abbreviated Journal  
  Volume 14187 Issue Pages 342–360  
  Keywords  
  Abstract Document layout analysis is a known problem to the documents research community and has been vastly explored yielding a multitude of solutions ranging from text mining, and recognition to graph-based representation, visual feature extraction, etc. However, most of the existing works have ignored the crucial fact regarding the scarcity of labeled data. With growing internet connectivity to personal life, an enormous amount of documents had been available in the public domain and thus making data annotation a tedious task. We address this challenge using self-supervision and unlike, the few existing self-supervised document segmentation approaches which use text mining and textual labels, we use a complete vision-based approach in pre-training without any ground-truth label or its derivative. Instead, we generate pseudo-layouts from the document images to pre-train an image encoder to learn the document object representation and localization in a self-supervised framework before fine-tuning it with an object detection model. We show that our pipeline sets a new benchmark in this context and performs at par with the existing methods and the supervised counterparts, if not outperforms. The code is made publicly available at: this https URL  
  Address Document Layout Analysis; Document  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (down) ICDAR  
  Notes DAG Approved no  
  Call Number Admin @ si @ MBM2023 Serial 3990  
Permanent link to this record
 

 
Author Benjia Zhou; Zhigang Chen; Albert Clapes; Jun Wan; Yanyan Liang; Sergio Escalera; Zhen Lei; Du Zhang edit   pdf
url  doi
openurl 
  Title Gloss-free Sign Language Translation: Improving from Visual-Language Pretraining Type Conference Article
  Year 2023 Publication IEEE/CVF International Conference on Computer Vision (ICCV) Workshops Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Sign Language Translation (SLT) is a challenging task due to its cross-domain nature, involving the translation of visual-gestural language to text. Many previous methods employ an intermediate representation, i.e., gloss sequences, to facilitate SLT, thus transforming it into a two-stage task of sign language recognition (SLR) followed by sign language translation (SLT). However, the scarcity of gloss-annotated sign language data, combined with the information bottleneck in the mid-level gloss representation, has hindered the further development of the SLT task. To address this challenge, we propose a novel Gloss-Free SLT based on Visual-Language Pretraining (GFSLT-VLP), which improves SLT by inheriting language-oriented prior knowledge from pre-trained models, without any gloss annotation assistance. Our approach involves two stages: (i) integrating Contrastive Language-Image Pre-training (CLIP) with masked self-supervised learning to create pre-tasks that bridge the semantic gap between visual and textual representations and restore masked sentences, and (ii) constructing an end-to-end architecture with an encoder-decoder-like structure that inherits the parameters of the pre-trained Visual Encoder and Text Decoder from the first stage. The seamless combination of these novel designs forms a robust sign language representation and significantly improves gloss-free sign language translation. In particular, we have achieved unprecedented improvements in terms of BLEU-4 score on the PHOENIX14T dataset (>+5) and the CSL-Daily dataset (>+3) compared to state-of-the-art gloss-free SLT methods. Furthermore, our approach also achieves competitive results on the PHOENIX14T dataset when compared with most of the gloss-based methods.  
  Address Vancouver; Canada; June 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (down) ICCVW  
  Notes HUPBA; Approved no  
  Call Number Admin @ si @ ZCC2023 Serial 3839  
Permanent link to this record
 

 
Author Eduardo Aguilar; Bogdan Raducanu; Petia Radeva; Joost Van de Weijer edit   pdf
url  doi
openurl 
  Title Continual Evidential Deep Learning for Out-of-Distribution Detection Type Conference Article
  Year 2023 Publication IEEE/CVF International Conference on Computer Vision (ICCV) Workshops -Visual Continual Learning workshop Abbreviated Journal  
  Volume Issue Pages 3444-3454  
  Keywords  
  Abstract Uncertainty-based deep learning models have attracted a great deal of interest for their ability to provide accurate and reliable predictions. Evidential deep learning stands out achieving remarkable performance in detecting out-of-distribution (OOD) data with a single deterministic neural network. Motivated by this fact, in this paper we propose the integration of an evidential deep learning method into a continual learning framework in order to perform simultaneously incremental object classification and OOD detection. Moreover, we analyze the ability of vacuity and dissonance to differentiate between in-distribution data belonging to old classes and OOD data. The proposed method, called CEDL, is evaluated on CIFAR-100 considering two settings consisting of 5 and 10 tasks, respectively. From the obtained results, we could appreciate that the proposed method, in addition to provide comparable results in object classification with respect to the baseline, largely outperforms OOD detection compared to several posthoc methods on three evaluation metrics: AUROC, AUPR and FPR95.  
  Address Paris; France; October 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (down) ICCVW  
  Notes LAMP; MILAB Approved no  
  Call Number Admin @ si @ ARR2023 Serial 3841  
Permanent link to this record
 

 
Author Albin Soutif; Antonio Carta; Andrea Cossu; Julio Hurtado; Hamed Hemati; Vincenzo Lomonaco; Joost Van de Weijer edit   pdf
url  openurl
  Title A Comprehensive Empirical Evaluation on Online Continual Learning Type Conference Article
  Year 2023 Publication Visual Continual Learning (ICCV-W) Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Online continual learning aims to get closer to a live learning experience by learning directly on a stream of data with temporally shifting distribution and by storing a minimum amount of data from that stream. In this empirical evaluation, we evaluate various methods from the literature that tackle online continual learning. More specifically, we focus on the class-incremental setting in the context of image classification, where the learner must learn new classes incrementally from a stream of data. We compare these methods on the Split-CIFAR100 and Split-TinyImagenet benchmarks, and measure their average accuracy, forgetting, stability, and quality of the representations, to evaluate various aspects of the algorithm at the end but also during the whole training period. We find that most methods suffer from stability and underfitting issues. However, the learned representations are comparable to i.i.d. training under the same computational budget. No clear winner emerges from the results and basic experience replay, when properly tuned and implemented, is a very strong baseline. We release our modular and extensible codebase at this https URL based on the avalanche framework to reproduce our results and encourage future research.  
  Address Paris; France; October 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (down) ICCVW  
  Notes LAMP Approved no  
  Call Number Admin @ si @ SCC2023 Serial 3938  
Permanent link to this record
 

 
Author Matej Kristan; Jiri Matas; Martin Danelljan; Michael Felsberg; Hyung Jin Chang; Luka Cehovin Zajc; Alan Lukezic; Ondrej Drbohlav; Zhongqun Zhang; Khanh-Tung Tran; Xuan-Son Vu; Johanna Bjorklund; Christoph Mayer; Yushan Zhang; Lei Ke; Jie Zhao; Gustavo Fernandez; Noor Al-Shakarji; Dong An; Michael Arens; Stefan Becker; Goutam Bhat; Sebastian Bullinger; Antoni B. Chan; Shijie Chang; Hanyuan Chen; Xin Chen; Yan Chen; Zhenyu Chen; Yangming Cheng; Yutao Cui; Chunyuan Deng; Jiahua Dong; Matteo Dunnhofer; Wei Feng; Jianlong Fu; Jie Gao; Ruize Han; Zeqi Hao; Jun-Yan He; Keji He; Zhenyu He; Xiantao Hu; Kaer Huang; Yuqing Huang; Yi Jiang; Ben Kang; Jin-Peng Lan; Hyungjun Lee; Chenyang Li; Jiahao Li; Ning Li; Wangkai Li; Xiaodi Li; Xin Li; Pengyu Liu; Yue Liu; Huchuan Lu; Bin Luo; Ping Luo; Yinchao Ma; Deshui Miao; Christian Micheloni; Kannappan Palaniappan; Hancheol Park; Matthieu Paul; HouWen Peng; Zekun Qian; Gani Rahmon; Norbert Scherer-Negenborn; Pengcheng Shao; Wooksu Shin; Elham Soltani Kazemi; Tianhui Song; Rainer Stiefelhagen; Rui Sun; Chuanming Tang; Zhangyong Tang; Imad Eddine Toubal; Jack Valmadre; Joost van de Weijer; Luc Van Gool; Jash Vira; Stephane Vujasinovic; Cheng Wan; Jia Wan; Dong Wang; Fei Wang; Feifan Wang; He Wang; Limin Wang; Song Wang; Yaowei Wang; Zhepeng Wang; Gangshan Wu; Jiannan Wu; Qiangqiang Wu; Xiaojun Wu; Anqi Xiao; Jinxia Xie; Chenlong Xu; Min Xu; Tianyang Xu; Yuanyou Xu; Bin Yan; Dawei Yang; Ming-Hsuan Yang; Tianyu Yang; Yi Yang; Zongxin Yang; Xuanwu Yin; Fisher Yu; Hongyuan Yu; Qianjin Yu; Weichen Yu; YongSheng Yuan; Zehuan Yuan; Jianlin Zhang; Lu Zhang; Tianzhu Zhang; Guodongfang Zhao; Shaochuan Zhao; Yaozong Zheng; Bineng Zhong; Jiawen Zhu; Xuefeng Zhu; Yueting Zhuang; ChengAo Zong; Kunlong Zuo edit   pdf
url  openurl
  Title The First Visual Object Tracking Segmentation VOTS2023 Challenge Results Type Conference Article
  Year 2023 Publication Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops Abbreviated Journal  
  Volume Issue Pages 1796-1818  
  Keywords  
  Abstract The Visual Object Tracking Segmentation VOTS2023 challenge is the eleventh annual tracker benchmarking activity of the VOT initiative. This challenge is the first to merge short-term and long-term as well as single-target and multiple-target tracking with segmentation masks as the only target location specification. A new dataset was created; the ground truth has been withheld to prevent overfitting. New performance measures and evaluation protocols have been created along with a new toolkit and an evaluation server. Results of the presented 47 trackers indicate that modern tracking frameworks are well-suited to deal with convergence of short-term and long-term tracking and that multiple and single target tracking can be considered a single problem. A leaderboard, with participating trackers details, the source code, the datasets, and the evaluation kit are publicly available at the challenge website\footnote https://www.votchallenge.net/vots2023/.  
  Address Paris; France; October 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (down) ICCVW  
  Notes LAMP Approved no  
  Call Number Admin @ si @ KMD2023 Serial 3939  
Permanent link to this record
 

 
Author Joakim Bruslund Haurum; Sergio Escalera; Graham W. Taylor; Thomas B. edit   pdf
url  openurl
  Title Which Tokens to Use? Investigating Token Reduction in Vision Transformers Type Conference Article
  Year 2023 Publication Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Since the introduction of the Vision Transformer (ViT), researchers have sought to make ViTs more efficient by removing redundant information in the processed tokens. While different methods have been explored to achieve this goal, we still lack understanding of the resulting reduction patterns and how those patterns differ across token reduction methods and datasets. To close this gap, we set out to understand the reduction patterns of 10 different token reduction methods using four image classification datasets. By systematically comparing these methods on the different classification tasks, we find that the Top-K pruning method is a surprisingly strong baseline. Through in-depth analysis of the different methods, we determine that: the reduction patterns are generally not consistent when varying the capacity of the backbone model, the reduction patterns of pruning-based methods significantly differ from fixed radial patterns, and the reduction patterns of pruning-based methods are correlated across classification datasets. Finally we report that the similarity of reduction patterns is a moderate-to-strong proxy for model performance. Project page at https://vap.aau.dk/tokens.  
  Address Paris; France; October 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (down) ICCVW  
  Notes HUPBA Approved no  
  Call Number Admin @ si @ BET2023 Serial 3940  
Permanent link to this record
 

 
Author Xavier Soria; Yachuan Li; Mohammad Rouhani; Angel Sappa edit   pdf
url  openurl
  Title Tiny and Efficient Model for the Edge Detection Generalization Type Conference Article
  Year 2023 Publication Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Most high-level computer vision tasks rely on low-level image operations as their initial processes. Operations such as edge detection, image enhancement, and super-resolution, provide the foundations for higher level image analysis. In this work we address the edge detection considering three main objectives: simplicity, efficiency, and generalization since current state-of-the-art (SOTA) edge detection models are increased in complexity for better accuracy. To achieve this, we present Tiny and Efficient Edge Detector (TEED), a light convolutional neural network with only 58K parameters, less than 0:2% of the state-of-the-art models. Training on the BIPED dataset takes less than 30 minutes, with each epoch requiring less than 5 minutes. Our proposed model is easy to train and it quickly converges within very first few epochs, while the predicted edge-maps are crisp and of high quality. Additionally, we propose a new dataset to test the generalization of edge detection, which comprises samples from popular images used in edge detection and image segmentation. The source code is available in https://github.com/xavysp/TEED.  
  Address Paris; France; October 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (down) ICCVW  
  Notes MSIAU Approved no  
  Call Number Admin @ si @ SLR2023 Serial 3941  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: