|   | 
Details
   web
Records
Author Arnau Baro; Alicia Fornes; Carles Badal
Title Handwritten Historical Music Recognition by Sequence-to-Sequence with Attention Mechanism Type Conference Article
Year 2020 Publication 17th International Conference on Frontiers in Handwriting Recognition Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Despite decades of research in Optical Music Recognition (OMR), the recognition of old handwritten music scores remains a challenge because of the variabilities in the handwriting styles, paper degradation, lack of standard notation, etc. Therefore, the research in OMR systems adapted to the particularities of old manuscripts is crucial to accelerate the conversion of music scores existing in archives into digital libraries, fostering the dissemination and preservation of our music heritage. In this paper we explore the adaptation of sequence-to-sequence models with attention mechanism (used in translation and handwritten text recognition) and the generation of specific synthetic data for recognizing old music scores. The experimental validation demonstrates that our approach is promising, especially when compared with long short-term memory neural networks.
Address Virtual ICFHR; September 2020
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference (up) ICFHR
Notes DAG; 600.140; 600.121 Approved no
Call Number Admin @ si @ BFB2020 Serial 3448
Permanent link to this record
 

 
Author Lei Kang; Pau Riba; Marçal Rusiñol; Alicia Fornes; Mauricio Villegas
Title Distilling Content from Style for Handwritten Word Recognition Type Conference Article
Year 2020 Publication 17th International Conference on Frontiers in Handwriting Recognition Abbreviated Journal
Volume Issue Pages
Keywords
Abstract Despite the latest transcription accuracies reached using deep neural network architectures, handwritten text recognition still remains a challenging problem, mainly because of the large inter-writer style variability. Both augmenting the training set with artificial samples using synthetic fonts, and writer adaptation techniques have been proposed to yield more generic approaches aimed at dodging style unevenness. In this work, we take a step closer to learn style independent features from handwritten word images. We propose a novel method that is able to disentangle the content and style aspects of input images by jointly optimizing a generative process and a handwritten
word recognizer. The generator is aimed at transferring writing style features from one sample to another in an image-to-image translation approach, thus leading to a learned content-centric features that shall be independent to writing style attributes.
Our proposed recognition model is able then to leverage such writer-agnostic features to reach better recognition performances. We advance over prior training strategies and demonstrate with qualitative and quantitative evaluations the performance of both
the generative process and the recognition efficiency in the IAM dataset.
Address Virtual ICFHR; September 2020
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference (up) ICFHR
Notes DAG; 600.129; 600.140; 600.121 Approved no
Call Number Admin @ si @ KRR2020 Serial 3425
Permanent link to this record
 

 
Author Giuseppe De Gregorio; Sanket Biswas; Mohamed Ali Souibgui; Asma Bensalah; Josep Llados; Alicia Fornes; Angelo Marcelli
Title A Few Shot Multi-representation Approach for N-Gram Spotting in Historical Manuscripts Type Conference Article
Year 2022 Publication Frontiers in Handwriting Recognition. International Conference on Frontiers in Handwriting Recognition (ICFHR2022) Abbreviated Journal
Volume 13639 Issue Pages 3-12
Keywords N-gram spotting; Few-shot learning; Multimodal understanding; Historical handwritten collections
Abstract Despite recent advances in automatic text recognition, the performance remains moderate when it comes to historical manuscripts. This is mainly because of the scarcity of available labelled data to train the data-hungry Handwritten Text Recognition (HTR) models. The Keyword Spotting System (KWS) provides a valid alternative to HTR due to the reduction in error rate, but it is usually limited to a closed reference vocabulary. In this paper, we propose a few-shot learning paradigm for spotting sequences of a few characters (N-gram) that requires a small amount of labelled training data. We exhibit that recognition of important n-grams could reduce the system’s dependency on vocabulary. In this case, an out-of-vocabulary (OOV) word in an input handwritten line image could be a sequence of n-grams that belong to the lexicon. An extensive experimental evaluation of our proposed multi-representation approach was carried out on a subset of Bentham’s historical manuscript collections to obtain some really promising results in this direction.
Address December 04 – 07, 2022; Hyderabad, India
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference (up) ICFHR
Notes DAG; 600.121; 600.162; 602.230; 600.140 Approved no
Call Number Admin @ si @ GBS2022 Serial 3733
Permanent link to this record
 

 
Author Arnau Baro; Pau Riba; Alicia Fornes
Title Musigraph: Optical Music Recognition Through Object Detection and Graph Neural Network Type Conference Article
Year 2022 Publication Frontiers in Handwriting Recognition. International Conference on Frontiers in Handwriting Recognition (ICFHR2022) Abbreviated Journal
Volume 13639 Issue Pages 171-184
Keywords Object detection; Optical music recognition; Graph neural network
Abstract During the last decades, the performance of optical music recognition has been increasingly improving. However, and despite the 2-dimensional nature of music notation (e.g. notes have rhythm and pitch), most works treat musical scores as a sequence of symbols in one dimension, which make their recognition still a challenge. Thus, in this work we explore the use of graph neural networks for musical score recognition. First, because graphs are suited for n-dimensional representations, and second, because the combination of graphs with deep learning has shown a great performance in similar applications. Our methodology consists of: First, we will detect each isolated/atomic symbols (those that can not be decomposed in more graphical primitives) and the primitives that form a musical symbol. Then, we will build the graph taking as root node the notehead and as leaves those primitives or symbols that modify the note’s rhythm (stem, beam, flag) or pitch (flat, sharp, natural). Finally, the graph is translated into a human-readable character sequence for a final transcription and evaluation. Our method has been tested on more than five thousand measures, showing promising results.
Address December 04 – 07, 2022; Hyderabad, India
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference (up) ICFHR
Notes DAG; 600.162; 600.140; 602.230 Approved no
Call Number Admin @ si @ BRF2022b Serial 3740
Permanent link to this record
 

 
Author Utkarsh Porwal; Alicia Fornes; Faisal Shafait (eds)
Title Frontiers in Handwriting Recognition. International Conference on Frontiers in Handwriting Recognition. 18th International Conference, ICFHR 2022 Type Book Whole
Year 2022 Publication Frontiers in Handwriting Recognition. Abbreviated Journal
Volume 13639 Issue Pages
Keywords
Abstract
Address ICFHR 2022, Hyderabad, India, December 4–7, 2022
Corporate Author Thesis
Publisher Springer Place of Publication Editor Utkarsh Porwal; Alicia Fornes; Faisal Shafait
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN ISBN 978-3-031-21648-0 Medium
Area Expedition Conference (up) ICFHR
Notes DAG Approved no
Call Number Admin @ si @ PFS2022 Serial 3809
Permanent link to this record
 

 
Author Sergio Escalera; Alicia Fornes; Oriol Pujol; Petia Radeva
Title Multi-class Binary Symbol Classification with Circular Blurred Shape Models Type Conference Article
Year 2009 Publication 15th International Conference on Image Analysis and Processing Abbreviated Journal
Volume 5716 Issue Pages 1005–1014
Keywords
Abstract Multi-class binary symbol classification requires the use of rich descriptors and robust classifiers. Shape representation is a difficult task because of several symbol distortions, such as occlusions, elastic deformations, gaps or noise. In this paper, we present the Circular Blurred Shape Model descriptor. This descriptor encodes the arrangement information of object parts in a correlogram structure. A prior blurring degree defines the level of distortion allowed to the symbol. Moreover, we learn the new feature space using a set of Adaboost classifiers, which are combined in the Error-Correcting Output Codes framework to deal with the multi-class categorization problem. The presented work has been validated over different multi-class data sets, and compared to the state-of-the-art descriptors, showing significant performance improvements.
Address Salerno, Italy
Corporate Author Thesis
Publisher Springer Berlin Heidelberg Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN 0302-9743 ISBN 978-3-642-04145-7 Medium
Area Expedition Conference (up) ICIAP
Notes MILAB;HuPBA;DAG Approved no
Call Number BCNPCL @ bcnpcl @ EFP2009c Serial 1186
Permanent link to this record
 

 
Author L.Tarazon; D. Perez; N. Serrano; V. Alabau; Oriol Ramos Terrades; A. Sanchis; A. Juan
Title Confidence Measures for Error Correction in Interactive Transcription of Handwritten Text Type Conference Article
Year 2009 Publication 15th International Conference on Image Analysis and Processing Abbreviated Journal
Volume 5716 Issue Pages 567-574
Keywords
Abstract An effective approach to transcribe old text documents is to follow an interactive-predictive paradigm in which both, the system is guided by the human supervisor, and the supervisor is assisted by the system to complete the transcription task as efficiently as possible. In this paper, we focus on a particular system prototype called GIDOC, which can be seen as a first attempt to provide user-friendly, integrated support for interactive-predictive page layout analysis, text line detection and handwritten text transcription. More specifically, we focus on the handwriting recognition part of GIDOC, for which we propose the use of confidence measures to guide the human supervisor in locating possible system errors and deciding how to proceed. Empirical results are reported on two datasets showing that a word error rate not larger than a 10% can be achieved by only checking the 32% of words that are recognised with less confidence.
Address Vietri sul Mare, Italy
Corporate Author Thesis
Publisher Springer Berlin Heidelberg Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN 0302-9743 ISBN 978-3-642-04145-7 Medium
Area Expedition Conference (up) ICIAP
Notes DAG Approved no
Call Number Admin @ si @ TPS2009 Serial 1871
Permanent link to this record
 

 
Author Patricia Suarez; Angel Sappa; Boris X. Vintimilla
Title Colorizing Infrared Images through a Triplet Conditional DCGAN Architecture Type Conference Article
Year 2017 Publication 19th international conference on image analysis and processing Abbreviated Journal
Volume Issue Pages
Keywords CNN in Multispectral Imaging; Image Colorization
Abstract This paper focuses on near infrared (NIR) image colorization by using a Conditional Deep Convolutional Generative Adversarial Network (CDCGAN) architecture model. The proposed architecture is based on the usage of a conditional probabilistic generative model. Firstly, it learns to colorize the given input image, by using a triplet model architecture that tackle every channel in an independent way. In the proposed model, the nal layer of red channel consider the infrared image to enhance the details, resulting in a sharp RGB image. Then, in the second stage, a discriminative model is used to estimate the probability that the generated image came from the training dataset, rather than the image automatically generated. Experimental results with a large set of real images are provided showing the validity of the proposed approach. Additionally, the proposed approach is compared with a state of the art approach showing better results.
Address Catania; Italy; September 2017
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference (up) ICIAP
Notes ADAS; MSIAU; 600.086; 600.122; 600.118 Approved no
Call Number Admin @ si @ SSV2017c Serial 3016
Permanent link to this record
 

 
Author Marc Oliu; Sarah Adel Bargal; Stan Sclaroff; Xavier Baro; Sergio Escalera
Title Multi-varied Cumulative Alignment for Domain Adaptation Type Conference Article
Year 2022 Publication 6th International Conference on Image Analysis and Processing Abbreviated Journal
Volume 13232 Issue Pages 324–334
Keywords Domain Adaptation; Computer vision; Neural networks
Abstract Domain Adaptation methods can be classified into two basic families of approaches: non-parametric and parametric. Non-parametric approaches depend on statistical indicators such as feature covariances to minimize the domain shift. Non-parametric approaches tend to be fast to compute and require no additional parameters, but they are unable to leverage probability density functions with complex internal structures. Parametric approaches, on the other hand, use models of the probability distributions as surrogates in minimizing the domain shift, but they require additional trainable parameters to model these distributions. In this work, we propose a new statistical approach to minimizing the domain shift based on stochastically projecting and evaluating the cumulative density function in both domains. As with non-parametric approaches, there are no additional trainable parameters. As with parametric approaches, the internal structure of both domains’ probability distributions is considered, thus leveraging a higher amount of information when reducing the domain shift. Evaluation on standard datasets used for Domain Adaptation shows better performance of the proposed model compared to non-parametric approaches while being competitive with parametric ones. (Code available at: https://github.com/moliusimon/mca).
Address Indonesia; October 2022
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference (up) ICIAP
Notes HuPBA; no menciona Approved no
Call Number Admin @ si @ OAS2022 Serial 3777
Permanent link to this record
 

 
Author Patricia Suarez; Dario Carpio; Angel Sappa
Title A Deep Learning Based Approach for Synthesizing Realistic Depth Maps Type Conference Article
Year 2023 Publication 22nd International Conference on Image Analysis and Processing Abbreviated Journal
Volume 14234 Issue Pages 369–380
Keywords
Abstract This paper presents a novel cycle generative adversarial network (CycleGAN) architecture for synthesizing high-quality depth maps from a given monocular image. The proposed architecture uses multiple loss functions, including cycle consistency, contrastive, identity, and least square losses, to enable the generation of realistic and high-fidelity depth maps. The proposed approach addresses this challenge by synthesizing depth maps from RGB images without requiring paired training data. Comparisons with several state-of-the-art approaches are provided showing the proposed approach overcome other approaches both in terms of quantitative metrics and visual quality.
Address Udine; Italia; Setember 2023
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference (up) ICIAP
Notes MSIAU Approved no
Call Number Admin @ si @ SCS2023a Serial 3968
Permanent link to this record
 

 
Author Susana Alvarez; Anna Salvatella; Maria Vanrell; Xavier Otazu
Title 3D Texton Spaces for color-texture retrieval Type Conference Article
Year 2010 Publication 7th International Conference on Image Analysis and Recognition Abbreviated Journal
Volume 6111 Issue Pages 354–363
Keywords
Abstract Color and texture are visual cues of different nature, their integration in an useful visual descriptor is not an easy problem. One way to combine both features is to compute spatial texture descriptors independently on each color channel. Another way is to do the integration at the descriptor level. In this case the problem of normalizing both cues arises. In this paper we solve the latest problem by fusing color and texture through distances in texton spaces. Textons are the attributes of image blobs and they are responsible for texture discrimination as defined in Julesz’s Texton theory. We describe them in two low-dimensional and uniform spaces, namely, shape and color. The dissimilarity between color texture images is computed by combining the distances in these two spaces. Following this approach, we propose our TCD descriptor which outperforms current state of art methods in the two different approaches mentioned above, early combination with LBP and late combination with MPEG-7. This is done on an image retrieval experiment over a highly diverse texture dataset from Corel.
Address
Corporate Author Thesis
Publisher Springer Berlin Heidelberg Place of Publication Editor A.C. Campilho and M.S. Kamel
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN 0302-9743 ISBN 978-3-642-13771-6 Medium
Area Expedition Conference (up) ICIAR
Notes CIC Approved no
Call Number CAT @ cat @ ASV2010a Serial 1325
Permanent link to this record
 

 
Author Naveen Onkarappa; Angel Sappa
Title On-Board Monocular Vision System Pose Estimation through a Dense Optical Flow Type Conference Article
Year 2010 Publication 7th International Conference on Image Analysis and Recognition Abbreviated Journal
Volume 6111 Issue Pages 230-239
Keywords
Abstract This paper presents a robust technique for estimating on-board monocular vision system pose. The proposed approach is based on a dense optical flow that is robust against shadows, reflections and illumination changes. A RANSAC based scheme is used to cope with the outliers in the optical flow. The proposed technique is intended to be used in driver assistance systems for applications such as obstacle or pedestrian detection. Experimental results on different scenarios, both from synthetic and real sequences, shows usefulness of the proposed approach.
Address Povoa de Varzim (Portugal)
Corporate Author Thesis
Publisher Springer Berlin Heidelberg Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN 0302-9743 ISBN 978-3-642-13771-6 Medium
Area Expedition Conference (up) ICIAR
Notes ADAS Approved no
Call Number ADAS @ adas @ OnS2010 Serial 1342
Permanent link to this record
 

 
Author Carles Sanchez;F. Javier Sanchez; Antoni Rosell; Debora Gil
Title An illumination model of the trachea appearance in videobronchoscopy images Type Book Chapter
Year 2012 Publication Image Analysis and Recognition Abbreviated Journal LNCS
Volume 7325 Issue Pages 313-320
Keywords Bronchoscopy, tracheal ring, stenosis assesment, trachea appearance model, segmentation
Abstract Videobronchoscopy is a medical imaging technique that allows interactive navigation inside the respiratory pathways. This imaging modality provides realistic images and allows non-invasive minimal intervention procedures. Tracheal procedures are routinary interventions that require assessment of the percentage of obstructed pathway for injury (stenosis) detection. Visual assessment in videobronchoscopic sequences requires high expertise of trachea anatomy and is prone to human error.
This paper introduces an automatic method for the estimation of steneosed trachea percentage reduction in videobronchoscopic images. We look for tracheal rings , whose deformation determines the degree of obstruction. For ring extraction , we present a ring detector based on an illumination and appearance model. This model allows us to parametrise the ring detection. Finally, we can infer optimal estimation parameters for any video resolution.
Address Aveiro, Portugal
Corporate Author Thesis
Publisher Springer Berlin Heidelberg Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Lecture Notes in Computer Science Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN 0302-9743 ISBN 978-3-642-31297-7 Medium
Area 800 Expedition Conference (up) ICIAR
Notes MV;IAM Approved no
Call Number IAM @ iam @ SSR2012 Serial 1898
Permanent link to this record
 

 
Author Patricia Marquez; Debora Gil ; Aura Hernandez-Sabate
Title Error Analysis for Lucas-Kanade Based Schemes Type Conference Article
Year 2012 Publication 9th International Conference on Image Analysis and Recognition Abbreviated Journal
Volume 7324 Issue I Pages 184-191
Keywords Optical flow, Confidence measure, Lucas-Kanade, Cardiac Magnetic Resonance
Abstract Optical flow is a valuable tool for motion analysis in medical imaging sequences. A reliable application requires determining the accuracy of the computed optical flow. This is a main challenge given the absence of ground truth in medical sequences. This paper presents an error analysis of Lucas-Kanade schemes in terms of intrinsic design errors and numerical stability of the algorithm. Our analysis provides a confidence measure that is naturally correlated to the accuracy of the flow field. Our experiments show the higher predictive value of our confidence measure compared to existing measures.
Address Aveiro, Portugal
Corporate Author Thesis
Publisher Springer-Verlag Berlin Heidelberg Place of Publication Editor
Language english Summary Language Original Title
Series Editor Campilho, Aurélio and Kamel, Mohamed Series Title Lecture Notes in Computer Science Abbreviated Series Title LNCS
Series Volume Series Issue Edition
ISSN 0302-9743 ISBN 978-3-642-31294-6 Medium
Area Expedition Conference (up) ICIAR
Notes IAM Approved no
Call Number IAM @ iam @ MGH2012a Serial 1899
Permanent link to this record
 

 
Author Ricard Borras; Agata Lapedriza; Laura Igual
Title Depth Information in Human Gait Analysis: An Experimental Study on Gender Recognition Type Conference Article
Year 2012 Publication 9th International Conference on Image Analysis and Recognition Abbreviated Journal
Volume 7325 Issue II Pages 98-105
Keywords
Abstract This work presents DGait, a new gait database acquired with a depth camera. This database contains videos from 53 subjects walking in different directions. The intent of this database is to provide a public set to explore whether the depth can be used as an additional information source for gait classification purposes. Each video is labelled according to subject, gender and age. Furthermore, for each subject and view point, we provide initial and final frames of an entire walk cycle. On the other hand, we perform gait-based gender classification experiments with DGait database, in order to illustrate the usefulness of depth information for this purpose. In our experiments, we extract 2D and 3D gait features based on shape descriptors, and compare the performance of these features for gender identification, using a Kernel SVM. The obtained results show that depth can be an information source of great relevance for gait classification problems.
Address Aveiro, Portugal
Corporate Author Thesis
Publisher Springer Berlin Heidelberg Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0302-9743 ISBN 978-3-642-31297-7 Medium
Area Expedition Conference (up) ICIAR
Notes OR; MILAB;MV Approved no
Call Number Admin @ si @ BLI2012 Serial 2009
Permanent link to this record